首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
Substrate converting enzymes interfering with the measurement of ribonucleotide reductase were assessed in cell-free extracts prepared from L1210 cells. Data show the presence of a myokinase-type enzyme activity (CTP:CMP phosphotransferase) which catalyzes the reaction: 2CDP in equilibrium CMP + CTP. This enzyme is not removed by passage of cell extracts over ATP-agarose columns. Monitoring of nucleoside diphosphate substrate level is, therefore, mandatory for obtaining accurate measurements of CDP reductase activity in crude cell extracts.  相似文献   

2.
Inhibitors of ribonucleotide reductase are potential antiproliferative agents, since they deplete cells from DNA precursors. Substrate nucleoside analogues, carrying azido groups at the base moiety, are shown to have strong cytostatic properties, as measured by the inhibition of the incorporation of thymidine into DNA. One compound, 8-azidoadenosine, inhibits CDP reduction in cytosolic extracts from cancer cells. The corresponding diphosphate behaves as a substrate for ribonucleotide reductase while the triphosphate is an allosteric effector.  相似文献   

3.
It was found that nucleoside 5'-diphosphates could serve as effectors of ribonucleotide reductase. ADP was an activator of CDP reduction; ADP reduction was activated by dGDP; GDP reduction was activated by dTDP. Conversely, dADP inhibited the reduction of CDP, UDP, GDP, and ADP; dGDP inhibited UDP and GDP reductions; and dTDP inhibited UDP reduction. The inhibition of UDP reduction by dADP, dTDP, and dGDP was at least equal to that observed for dATP, dTTP, and dGTP, respectively. In these experiments with the nucleoside diphosphates as effectors, high-pressure liquid chromatography analysis of the reaction mixtures showed that no nucleoside 5'-triphosphates were found during the reaction period which could account for the effects seen with the nucleoside diphosphates as effectors. Further experiments were carried out in which adenyl-5'-yl imidodiphosphate was used as the positive effector of CDP and UDP reductions in place of ATP. Under these conditions, CDP and UDP reductions were inhibited by dADP, dTDP, and dGDP to the same extent observed in the presence of ATP. ADP served not only as a substrate for ribonucleotide reductase but also as an activator of CDP and UDP reductions. The direct products (dNDPs) also served as positive and negative effectors. Dixon plots indicated that the dNDPs were acting as noncompetitive inhibitors with respect to the substrate. ADP increased the sedimentation velocity of the ribonucleotide reductase in a manner similar to ATP. These data are consistent with the allosteric effects seen with the nucleoside 5'-triphosphates. Additionally, from the thorough study of the role of effectors on UDP reduction, it is clear that UDP reduction was most sensitive to the negative effectors dATP, dADP, dTTP, dTDP, dGTP, and dGDP.  相似文献   

4.
Abstract

The use of an ATP-agarose column to purify ribonucleotide reductase from human D-98 cells was recently reported.1 The column selectively retains < 99.9% of the contaminating nucleoside diphosphate (NDP) kinase from crude preparations of ribonucleotide reductase. It was presently found, however, that extending the length of the column caused the ribonucleotide reductase to dissociate into subunits. One subunit appeared in the low ionic strength buffer wash while the other required 0.5 M KC1 for elution. The enzyme could also be recovered Intact (non-dissociated) by equilibrating the enzyme preparation and the column with 0.5 M KC1 prior to chromatography. Either method greatly improved the overall yield and the specific activity of the ribonucleotide reductase because it prevented the binding and subsequent loss of any of the subunits. In addition, the use of a larger column permitted the gel-filtration properties of the ATP-agarose to separate the bulk of the residual (not bound) NDP kinase from the ribonucleotide reductase.  相似文献   

5.
Improvement of a simple method to purify ribonucleotide reductase   总被引:1,自引:0,他引:1  
The use of an ATP-agarose column to purify ribonucleotide reductase from human D-98 cells was recently reported. The column selectively retains greater than 99.9% of the contaminating nucleoside diphosphate (NDP) kinase from crude preparations of ribonucleotide reductase. It was presently found, however, that extending the length of the column caused the ribonucleotide reductase to dissociate into subunits. One subunit appeared in the low ionic strength buffer wash while the other required 0.5 M KCl for elution. The enzyme could also be recovered intact (non-dissociated) by equilibrating the enzyme preparation and the column with 0.5 M KCl prior to chromatography. Either method greatly improved the overall yield and the specific activity of the ribonucleotide reductase because it prevented the binding and subsequent loss of any of the subunits. In addition, the use of a larger column permitted the gel-filtration properties of the ATP-agarose to separate the bulk of the residual (not bound) NDP kinase from the ribonucleotide reductase.  相似文献   

6.
Increased ribonucleotide reductase activity has been detected in vaccinia virus-infected BSC-40 cells. We have studied certain biochemical and kinetic properties of CDP reduction in extracts from infected and uninfected cells. ATP inhibited reductase activity in crude extracts by rapid and extensive substrate phosphorylation. Substitution of adenylylimido-diphosphate (AMP-PNP), a noncleavable analog that functions as positive activator for reductase, but inhibits phosphorylation and cleavage of substrate, allowed us to reliably measure reductase activity. In the presence of AMP-PNP, CDP reduction by extracts from infected or uninfected cells was linear with time for 60 min and with enzyme concentration, except at very low enzyme levels. Activities from both sources were optimally active at pH 8.1. Variation of AMP-PNP and Mg2+ concentrations revealed, however, that in the absence of exogenous Mg2+, AMP-PNP strongly stimulated virus-induced CDP reduction, but inhibited endogenous CDP reduction. In the presence of the activator, increasing Mg2+ concentrations progressively inhibited the induced activity, but stimulated the endogenous activity up to a 1:2 Mg2+/activator molar ratio. The vaccinia virus-induced activity was highly dependent on AMP-PNP and was not detectable over underlying cellular activity in its absence. Determination of substrate kinetics with respect to CDP revealed a threefold-lower Km for the virus-induced enzyme as compared with the cellular enzyme. These data suggest, but do not prove, that a novel ribonucleotide reductase is expressed on infection by vaccinia virus.  相似文献   

7.
Nucleotides formation after addition of [γ32P]-ATP has been analysed in isolated chloroplasts in the presence of exogenous CDP, UDP and GDP. The highest level of phosphotransfer was observed on CDP and UDP after 10 min incubation. Interestingly, the phosphorylation increase of chloroplastic CDP in organello correlated with the time-dependent dephosphorylation of a 18-kDa polypeptide, thereby indicating that CDP, the major endogenous phosphorylated NDP, is likely to be a potent in vivo substrate for this phosphoprotein. The 18-kDa polypeptide was immunoprecipitated with antibodies directed against human nucleoside diphosphate kinase (NDPK) A/B and spinach NDPK-II, both belonging to the ubiquitous family of NDPKs (EC 2.7.4.6). Using recombinant NDPK-II, we could not show a preference for CDP in vitro, suggesting either that CDP is the most available NDPK-II substrate in intact chloroplasts or a chloroplastic factor modulates the enzyme affinity for nucleoside diphosphate substrates in vivo.  相似文献   

8.
The development and regional distribution of ribonucleotide reductase (EC 1.17.4.1) were determined in rat brain. Ribonucleotide reductase was partially purified by ammonium sulfate fractionation (20-40% saturation). Enzyme activity was measured by a specific radiochemical assay. This method involved the reduction of [14C]cytidine diphosphate (CDP) to [14C]deoxy-cytidine diphosphate with subsequent hydrolysis and separation of the product ([14C]deoxycytidine) from substrate ([14C]cytidine) by Dowex-1-borate ion-exchange chro-matography. The specific activity of ribonucleotide reductase in whole brain of newborn rats was 3.78 ± 0.55 units (pmol/h)/mg protein (SEM; n = 6) and declined to 0.17 ± 0.01 units/mg protein (n = 7) at 10-12 weeks of age, with a further decline to 0.11 ± 0.01 units/mg protein (n = 3) at 1 year. Ribonucleotide reductase activity in rat liver decreased from 4.58 ± 0.62 units/mg protein (n = 3) in newborn animals to 0.06 ± 0.01 units/mg protein (n = 7) at 10-12 weeks and was present at trace levels at 6 months of age. The decline in specific activity with age was not due to a change in the Km for CDP. The Km for CDP in brain of newborn and adult rats was 80-90 μM. In 10- to 12-week-old rats, the specific activity of ribonucleotide reductase was similar in the various regions of the brain tested except for the brainstem, which had 50% lower specific activity than the whole brain. These results indicate that ribonucleotide reductase activity is present and widely distributed in adult rat brain.  相似文献   

9.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

10.
An intact cell assay system based upon Tween-80 permeabilization was used to investigate the regulation of ribonucleotide reductase activity in Chinese hamster ovary cells. Models used to explain the regulation of the enzyme have been based upon work carried out with cell-free extracts, although there is concern that the properties of such a complex enzyme would be modified by extraction procedures. We have used the intact cell assay system to evaluate, within whole cells, the current model of ribonucleotide reductase regulation. While some of the results agree with the proposals of the model, others do not. Most significantly, it was found that ribonucleotide reductase within the intact cell could simultaneously bind the nucleoside triphosphate activators for both CDP and ADP reductions. According to the model based upon studies with cell-free preparations, the binding of one of these nucleotides should exclude the binding of others. Also, studies on intracellular enzyme activity in the presence of combinations of nucleotide effectors indicate that GTP and perhaps dCTP should be included in a model for ribonucleotide reductase regulation. For example, GTP has the unique ability to modify through activation both ADP and CDP reductions, and synergistic effects were obtained for the reduction of CDP by various combinations of ATP and dCTP. In general, studies with intact cells suggest that the in vivo regulation of ribonucleotide reductase is more complex than predicted from enzyme work with cell-free preparations. A possible mechanism for the in vivo regulation of ribonucleotide reductase, which combines observations of enzyme activity in intact cells and recent reports of independent substrate-binding subunits in mammalian cells is discussed.  相似文献   

11.
The mammalian ribonucleotide reductase consists of two nonidentical subunits, protein M1 and M2. M1 binds nucleoside triphosphate allosteric effectors, whereas M2 contains a tyrosine free radical essential for activity. The activity of ribonucleotide reductase increased 10-fold in extracts of mouse L cells 6 h after infection with pseudorabies virus. The new activity was not influenced by antibodies against subunit M1 of calf thymus ribonucleotide reductase, whereas the reductase activity in uninfected cells was completely neutralized. Furthermore, packed infected cells (but not mock-infected cells) showed an electron paramagnetic resonance spectrum of the tyrosine free radical of subunit M2 of the cellular ribonucleotide reductase. These data given conclusive evidence that on infection, herpesvirus induces a new or modified ribonucleotide reductase. The virus-induced enzyme showed the same sensitivity to inhibition by hydroxyurea as the cellular reductase. The allosteric regulation of the virus enzyme was completely different from the regulation of the cellular reductase. Thus, CDP reduction catalyzed by the virus enzyme showed no requirement for ATP as a positive effector, and no feedback inhibition was observed by dTTP or dATP. The virus reductase did not even bind to a dATP-Sepharose column which bound the cellular enzyme with high affinity.  相似文献   

12.
Purification of ribonucleotide reductase from regenerating rat liver using dATP Sepharose chromatography isolated a subunit of the enzyme which was specific for the reduction of CDP. Activities for the other ribonucleotide diphosphates showed differing distribution in the various fractions suggesting different forms of the enzyme for each ribonucleotide diphosphate.  相似文献   

13.
Ribonucleotide reductase activity is strongly regulated by nucleoside 5'-triphosphates acting as positive and negative effectors. With the use of dGTP analogs, araGTP and dITP, it was found that the structural requirements of dGTP to serve as a positive effector of ADP reductase were not the same as the requirements for dGTP to serve as a negative effector of CDP and ADP reductase activities. The dTTP analogs methylenedTTP and dideoxyTTP also gave different responses in terms of activating GDP reductase activity and inhibiting CDP and ADP reductase activities. Etheno-ATP and etheno-dATP were inactive as positive and negative effectors, respectively, of CDP reductase activity. DideoxyATP was less active than dATP as a negative effector. Formycin ATP was a very poor substitute for ATP as a positive effector of CDP reductase. These studies indicate that the effector sites are very specific in terms of binding nucleoside triphosphates as positive or negative modulators of ribonucleotide reductase activity.  相似文献   

14.
Ribonucleoside diphosphate reductase (EC1.17.4.1) was previously characterized in exponentially growing mouse L cells selectively permeabilized to small molecules by treatment with dextran sulfate (Kucera and Paulus, 1982b). This characterization has now been extended to cells in specific phases of the cell cycle and in transition between cell cycle phases, with activity studied both in situ (permeabilized cells) and in cell extracts. Cells at various stages in the cell cycle were obtained by unit-gravity sedimentation employing a commercially available reorienting chamber device, by G1 arrest induced by isoleucine limitation, and by metaphase arrest induced by Colcemid. G1 cells from both cycling and noncycling populations had negligible levels of ribonucleotide reductase activity as measured by CDP reduction both in situ and in extracts. When G1 arrested cells were allowed to progress to S phase, ribonucleotide reductase activity increased in parallel with [3H]thymidine incorporation into DNA. Ribonucleotide reductase activity in extracts increased at a somewhat greater rate than in situ activity. S phase ribonucleotide reductase activity measured in situ resembled the previously characterized activity in exponentially growing cells with respect to an absolute dependence on ATP or its analogs as positive allosteric effector, sensitivity to the negative allosteric effector dATP, and low susceptibility to stimulation by NADPH, dithiothreitol, and FeCl3. Disruption of permeabilized cells caused reductase activity to become highly dependent on the presence of both dithiothreitol and FeCl3. As synchronized cultures progressed from S into G2/M phase, no significant change in ribonucleotide reductase activity was seen. On the other hand, when cells that had been arrested in metaphase by Colcemid were allowed to resume cell cycle traversal by removing the drug, in situ ribonucleotide reductase activity decreased by 75% within 2.5 h. This decrease seemed to be a late mitotic event, since it was not correlated with the percentage of cells entering G1 phase. The cause of a subsequent slight increase of in situ ribonucleotide reductase activity is not clear. Parallel measurements of ribonucleotide reductase activity in cell extracts indicated also an initial decline accompanied by increasing dependence on added dithiols and FeCl3, followed by complete activity loss. Our results suggest a cell cycle pattern of ribonucleotide reductase activity that involves negligible levels in G1 phase, a progressive increase of activity upon entry into S phase paralleling overall DNA synthesis, continued retention of significant ribonucleotide reductase activity well into the metaphase period of mitosis, and a very rapid decline in activity during the later phases of mitosis. The periods of increase and decrease of ribonucleotide reductase activity were accompanied by modulation of the properties of the enzyme as indicated by differential changes in enzyme activity measured in situ and in extracts.  相似文献   

15.
Assay of ribonucleotide reduction in nucleotide-permeable hamster cells   总被引:9,自引:0,他引:9  
Ribonucleotide reduction was measured in Chinese hamster ovary cells made permeable to nucleotides by treatment with the detergent Tween-80. When compared to the respective ribonucleotide reductase activity in partially purified cell extracts, CDP and GDP reductase activities in permeabilized cells responded in a similar fashion to dithiothreitol, pH, MgCl2, FeCl3, substrate concentration and the presence of positive or negative allosteric effectors. At low protein concentrations both CDP and GDP reduction with whole cells increased linearly with cell number and was greater than the activity in corresponding cell extracts. Permeabilized cells were used to measure the level of CDP and GDP reductase in a hamster cell line resistant to the cytotoxic effects of hydroxyurea. The hydroxyurea-resistant cell line contained four to ten times more CDP and GDP reductase activity compared to parental or revertant cell lines. The permeabilized cell assay was also used to measure CDP and GDP reductase activities in Chinese hamster ovary cells synchronized by isoleucine starvation. CDP reductase activity was low in G1 arrested cells but increased 10-fold by 16 hours after the readdition of isoleucine to the growth medium. GDP reductase, which is present at much higher levels, is similarly induced after isoleucine addition, but only by 2-fold. The maximum activity of both CDP and GDP reductase occurred from 14 to 16 hours after isoleucine addition, which corresponded to the period of maximum DNA synthesis.  相似文献   

16.
The effect of 3'-azido-3'-deoxythymidine on nucleoside diphosphate kinase of isolated rat liver mitochondria has been studied. This is done by monitoring the increase in the rate of oxygen uptake by nucleoside diphosphate (TDP, UDP, CDP or GDP) addition to mitochondria in state 4. It is shown that 3'-azido-3'-deoxythymidine inhibits the mitochondrial nucleoside diphosphate kinase in a competitive manner, with a Ki value of about 10 microM as measured for each tested nucleoside diphosphate. It is also shown that high concentrations of GDP prevent 3'-azido-3'-deoxythymidine inhibition of the nucleoside diphosphate kinase.  相似文献   

17.
In both prokaryotic and eukaryotic organisms, nucleoside diphosphate kinase is a multifunctional protein, with well defined functions in ribo- and deoxyribonucleoside triphosphate biosynthesis and more recently described functions in genetic and metabolic regulation, signal transduction, and DNA repair. This paper concerns two unusual properties of nucleoside diphosphate (NDP) kinase from Escherichia coli: 1) its ability to interact specifically with enzymes encoded by the virulent bacteriophage T4 and 2) its roles in regulating metabolism of the host cell. By means of optical biosensor analysis, fluorescence spectroscopy, immunoprecipitation, and glutathione S-transferase pull-down assays, we have shown that E. coli NDP kinase interacts directly with T4 thymidylate synthase, aerobic ribonucleotide reductase, dCTPase-dUTPase, gene 32 single-strand DNA-binding protein, and deoxycytidylate hydroxymethylase. The interactions with ribonucleotide reductase and with gp32 are enhanced by nucleoside triphosphates, suggesting that the integrity of the T4 dNTP synthetase complex in vivo is influenced by the composition of the nucleotide pool. The other investigations in this work stem from the unexpected finding that E. coli NDP kinase is dispensable for successful T4 phage infection, and they deal with two observations suggesting that the NDP kinase protein plays a genetic role in regulating metabolism of the host cell: 1) the elevation of CTP synthetase activity in an ndk mutant, in which the structural gene for NDP kinase is disrupted, and 2) the apparent ability of NDP kinase to suppress anaerobic growth in a pyruvate kinase-negative E. coli mutant. Our data indicate that the regulatory roles are metabolic, not genetic, in nature.  相似文献   

18.
The kinetic properties of partially purified ribonucleotide reductase from Chinese hamster ovary cells have been investigated. Double reciprocal plots of velocity against substrate concentration were found to be linear for three the substrates tested, and yielded apparent Km values of 0.12 mM for CDP, 0.14 mM for ADP and 0.026 mM for GDP. Hydroxyurea, a potent inhibitor of ribonucleotide reduction, was tested against varying concentrations of ribonucleotide substrates and inhibited the enzyme activity in an uncompetitive fashion. Intercept replots were linear and exhibited Ki values for hydroxyurea of 0.08 mM for CDP reduction, 0.13 mM for ADP reduction and 0.07 mM for GDP reduction. Guanazole, another inhibitor of ribonucleotide reductase, interacted with the enzyme in a similar manner to hydroxyurea showing an uncompetitive pattern of inhibition with CDP reduction and yielding a Ki value of 0.57 mM. Partially purified ribonucleotide reductase from hydroxyurea-resistant cells was compared to enzyme activity from wild type cells. Significant differences were observed in the hydroxyurea Ki values with the three ribonucleotide substrates that were tested. Also, CDP reductase activity from the drug-resistant cells yielded a significantly higher Ki value for guanazole inhibition than the wild type activity. The properties of partially purified ribonucleotide reductase from a somatic cell hybrid constructed from wild type and hydroxyurea-resistant cells was also examined. The Ki value for hydroxyurea inhibition of CDP reductase was intermediate between the Ki values of the parental lines and indicated a codominant expression of hydroxyurea-resistance at the enzyme level. The most logical explanation for these results is that the mutant cells contain a structurally altered ribonucleotide reductase whose activity is less sensitive to inhibition by hydroxyurea or guanazole.  相似文献   

19.
R G Hards  J A Wright 《Enzyme》1983,29(4):223-228
There is an iron-dependent activity in the venom of Crotalus atrox which appears to hydrolyze the N-glycosidic sugar-base bond of pyrimidine and purine nucleotides. Maximal activation of this activity occurred at 1.0 mmol/l and 0.8 mmol/l FeCl3 for cytidine diphosphate (CDP) and ADP substrates, respectively. The release of free base affects the background values of control experiments carried out during nucleotide-labelled assays of ribonucleotide reductase which require the conversion of nucleotides to nucleosides by snake venom treatment. When the reductase is examined in intact cells, a situation closely resembling normal physiological conditions for the enzyme, FeCl3 was found to be an inhibitor of ADP reductions and varied from a mild stimulator to a significant inhibitor of CDP reductions depending upon FeCl3 concentration. Possible explanations for previously observed variability in ribonucleotide reductase activity in the presence of iron are suggested.  相似文献   

20.
Incubation of the pyrimidine [3'-3H]UDP with ribonucleotide reductase resulted in an isotope effect on the conversion to dUDP which varied as a function of pH and allosteric effectors (pH, kH/kT, effector): 6.6, 4.7, ATP; 7.6, 3.3, ATP; 7.6, 2.6, dATP; 7.6, 2.0, TTP; 8.4, 2.8, ATP. During this reaction 3H2O was also released. The lower the pH of the reaction, the larger the isotope effect, and the smaller the amount of 3H2O produced. At 50% conversion of UDP to dUDP and at pH 7.6, approximately 0.5% of total 3H present in solution was volatilized, while at pH 8.4, approximately 0.9% was volatilized. Similar experiments in which the purine [3'-3H]ADP was incubated with ribonucleotide reductase also resulted in an isotope effect on its conversion to dATP which varied as a function of pH (pH, kH/kT with dGTP as an effector); 6.6, 1.9; 7.6, 1.7; 8.6, 1.4. Furthermore, 3H2O was also released as a function of the extent of the reaction. At 50% turnover and pH 7.6, approximately 0.6% of 3H2O was volatilized, while at pH 8.6 approximately 1.25% was released. Two control experiments in which either the B1 subunit of ribonucleotide reductase was inactivated with 2'-chloro-2'-deoxyuridine 5'-diphosphate or the B2 subunit of ribonucleotide reductase was inactivated with 2'-azido-2'-deoxyuridine 5'-diphosphate and then the enzyme incubated with [3'-3H]ADP or [3'-3H]UDP indicated that in neither case was 3H released. Both B1 and B2 subunits are required for cleavage of the 3'-C--H bond. Incubation of [3'-3H]dADP or [3'-3H]dUDP with ribonucleotide reductase produced no measurable release of 3H. These data clearly indicate that conversion of a purine or pyrimidine diphosphate to a deoxynucleotide diphosphate by Escherichia coli ribonucleotide reductase requires cleavage of the 3'-C--H bond of the substrate. The fate of the 3'-H of the substrate was also determined. Incubation of [3'-2H]UDP with ribonucleotide reductase resulted in the production of [3'-2H]dUDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号