首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal and molecular structure of the title complex has been determined by X-ray diffraction methods. The crystals contain one water molecule per asymmetric unit, which plays a important role in the molecular packing by forming hydrogen bonds with two carboxyl oxygen atoms of indole-3-acetic acid and a carbamoyl nitrogen atom of the 1-methyl-3-carbamoylpyridinium cation. Prominent stacking between the indole ring and the pyridinium ring, caused by the πDA interaction, is observed. This overlap with substantial result may provide a model for the stacking interaction between NAD+ and the tryptophanyl residues in the proteins.  相似文献   

2.
T Ishida  M Shibata  K Fujii  M Inoue 《Biochemistry》1983,22(15):3571-3581
Crystals of 1,9-dimethyladeninium-indole-3-acetate (1:1) complex (I) and 9-(3-indol-3-ylpropyl)-1-methyladeninium iodide (II), an inter- or intramolecular model for the stacking interaction between the tryptophanyl residue and the methylated (or protonated) adenine base, were subjected to X-ray analyses. Nearly parallel stacking and interplanar spacing near to 3.4 A were observed between the indole and adeninium rings of both crystals. In particular, one of the two stacking pairs formed in I showed the existence of a partial charge-transfer interaction in their ground states. On the basis of the molecular orbital consideration, the mutual orientation between these stacked aromatic rings is considerably governed by the orbital interaction between the highest occupied molecular orbital of the indole ring and the lowest unoccupied one of the adeninium ring. The ring stacking observed in II was stabilized by the strong coupled dipole-dipole interaction. Absorption, fluorescence, and proton nuclear magnetic resonance spectra indicated the existence of a stacking interaction in the aqueous solutions of I and II, as well as in their crystalline states. The biological implication for the observed stacking interactions has been discussed.  相似文献   

3.
The crystal and molecular structures of the title complex has been determined by X-ray diffraction methods, as a model for tryptophan residues in protein-pyridine coenzyme interactions. The structure was solved by direct methods and was refined by standard methods (final R = 0.073). The light-green crystals consist of alternate layers of indole-3-acetic acid and 1-methyl-3-carbamoylpyridinium molecules piled up to the c-direction, and are stabilized by the crystal water participating in hydrogen bonds in the a- and b-directions. The parallel stackings and interplanar spacing distances between indole and pyridinium rings strongly suggest a II–II1 charge transfer from the indole ring to the lowest unoccupied orbital of the pyridinium ring in the ground state. Furthermore, this crystal structure provides evidence that quaternization of the N1 position enhances electron-acceptor properties of pyridine. On the other hand, the proton magnetic resonance spectra suggest that the stacking mode between both rings in solution is very similar to the one observed in the crystal structure.  相似文献   

4.
Spectrophotometric studies have provided evidence for zinc-mediated ternary complexes between ATP and aromatic amino acids. The hypochromicity observed in the 260 nm band of ATP increased in the order phenylalanine less than tyrosine less than tryptophan. Adding alanine did not produce any change of the ATP spectrum. The association constant was four fold higher for the ATP-Zinc-Tryptophan complex than for that of the ATP-Zinc-Alanine. The increased stability of the former complex was ascribed to the stacking interaction between indole and adenine rings. The maximum concentration of the ATP-Zinc-Tryptophan complex occurred at about pH 8.0. For these ternary complexes several possible stacked structures involving or not involving N(7) of adenine are discussed.  相似文献   

5.
Ricin A-chain is an N-glucosidase that attacks ribosomal RNA at a highly conserved adenine residue. Our recent crystallographic studies show that not only adenine and formycin, but also pterin-based rings can bind in the active site of ricin. For a better understanding of the means by which ricin recognizes adenine rings, the geometries and interaction energies were calculated for a number of complexes between ricin and tautomeric modifications of formycin, adenine, pterin, and guanine. These were studied by molecular mechanics, semi-empirical quantum mechanics, and ab initio quantum mechanical methods. The calculations indicate that the formycin ring binds better than adenine and pterin better than formycin, a result that is consistent with the crystallographic data. A tautomer of pterin that is not in the low energy form in either the gas phase or in aqueous solution has the best interaction with the enzyme. The net interaction energy, defined as the interaction energy calculated in vacuo between the receptor and an inhibitor minus the solvation energy of the inhibitor, provides a good prediction of the ability of the inhibitor to bind to the receptor. The results from experimental and molecular modeling work suggest that the ricin binding site is not flexible and may only recognize a limited range of adenine-like rings. Proteins 31:33–41, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    The interaction between N6-methyladenosine and polyuridylic acid in D2O solution at neutral pD has been studied as a function of temperature and N6-methyladenosine concentration by proton magnetic resonance spectroscopy. A rigid double-stranded 1:1 complex is formed below ~10°C, involving hydrogen-bonded N6-methyladenine:uracil base-pairing and stacking of the adenine bases. This complex is less stable than the 1:2 complex formed between adenosine and polyU, and involves a more rapid exchange of the monomer between free and polymer-bound environments.  相似文献   

    7.
    The absorption band at 260 mμ of NAD+ shifts to 360 mg by interaction with GAPDH or its analogues. Two explanations have been given on this red shift; one is an addition of such nucleophilic residue as sulfhydryl group in the enzyme to the position four in nicotinamide nucleus of NAD+, and the other is the charge transfer from such aromatic amino acid as tryptophan to NAD+. In the present paper, possibility of the charge transfer from indole residue to NAD+ was investigated quantum chemically. Taking into account of the electric field due to the charges in the enzyme, the absorption band of the NAD+-enzyme complex at 360 mμ was explained as a charge transfer from indole nucleus to NAD+. The blue shift of the absorption band of NADH at 340 mμ was also explained by taking into account of the electric field and this supported the proposition of Kosower (1962a).Stacking of adenine nucleus with indole nucleus in the NAD+-enzyme complex was suggested from the NMR spectroscopic data. Our molecular orbital calculations predicted that the effects of adenine on spectral shifts were not significant.  相似文献   

    8.
    A new bidentate chelating pyrazolylpyrimidine ligand bearing a strong electron-donating substituent, i.e. 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine (L) (Scheme 1), has been synthesized and used to obtain the copper(II) complexes by reaction with CuCl2. The molar ratio Cu:L = 1:2 leads to isolation of a complex having CuL2Cl2 empirical formula, while the molar ratio Cu:L = 1:1 gives a complex with CuLCl2 empirical formula. The crystal structure of L as well as the structures of both complexes were studied by single crystal X-ray diffraction. The crystal structure of CuL2Cl2 compound is formed by trans-[CuL2Cl2] mononuclear molecules. Surprisingly, in contrast to the previous compound having molecular structure, the crystal structure of CuLCl2 consists of mononuclear [CuL2Cl]+ complex cations and dinuclear [Cu2Cl6]2− anions. Thus, formula of CuLCl2 complex can be represented as [CuL2Cl]2[Cu2Cl6]. In both complexes molecules of L adopt bidentate chelating coordination mode through N2 atom of pyrazole and N3 atom of pyrimidine rings forming five-membered CuN3C metallocycles. Owing to C-H···N interactions and π-π-stacking L molecules form 2D network. In the structure of trans-[CuL2Cl2] there exist double lone pair(N(piperidine))-π(pyrimidine) interactions and C-H···Cl contacts resulting in the formation of 1D chains. Layered 2D structure of [CuL2Cl]2[Cu2Cl6] results from C-H···Cl, C-H···π and double lone pair(Cl([CuL2Cl]+ complex cation)-π(pyrimidine) interactions.  相似文献   

    9.
    Two coordination polymers of cadmium with formula [Cd(pyp)2(H2O)2]n (1) and {[Cd2(pyzca)3(atr)(H2O)]·H2O}n (2) [pypH = 3-pyridinepropionic acid, pyzcaH = 2-pyrazinecarboxylic acid and atrH = 5-aminotetrazole] have been synthesized and structurally characterized by X-ray single crystal diffraction analysis. Both complexes display 2D structures that extend into a 3D network by means of hydrogen bonding. The crystal packing of both complexes is reinforced by π-π interactions between adjacent aromatic rings. The fluorescence study indicates intraligand π-π* charge transfer, which is the reason for emission in both the complexes.  相似文献   

    10.
    11.
    A soluble yellow CO dehydrogenase from CO-autotrophically grown cells of Pseudomonas carboxydohydrogena was purified 35-fold in seven steps to better than 95% homogeneity with a yield of 30%. The final specific activity was 180 μmol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, nicotinamide adenine dinucleotide (phosphate), flavin mononucleotide, and flavin adenine dinucleotide were not reduced by the enzyme, but methylene blue, thionin, and toluylene blue were reduced. The molecular weight of native enzyme was determined to be 4 × 105. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed at least three nonidentical subunits of molecular weights 14,000 (α), 28,000 (β), and 85,000 (γ). The ratio of densities of each subunit after electrophoresis was about 1:2:6 (α/β/γ), suggesting an α3β3γ3 structure for the enzyme. The purified enzyme was free of formate dehydrogenase and nicotinamide adenine dinucleotide-specific hydrogenase activities, but contained particulate hydrogenase-like activity with thionin as electron acceptor. Known metalchelating agents tested had no effect on CO dehydrogenase activity. No divalent cations tested stimulated enzyme activity. The native enzyme does not contain Ni since cells assimilated little 63Ni during growth, and the specific 63Ni content of the enzyme declined during purification. The isoelectric point of the native enzyme was found to be 4.5 to 4.7. The Km for CO was found to be 63 μM. The spectrum of the enzyme and its protein-free extract revealed that it contains bound flavin. The cofactor was flavin adenine dinucleotide based on enzyme digestion and thin-layer chromatography. One mole of native enzyme contains at least 3 mol of noncovalently bound flavin adenine dinucleotide.  相似文献   

    12.
    Evidence for the occurrence of indole 3-acetic acid in Caulerpa paspaloides extracts was obtained by bioassay, by high-performance liquid chromatography with an electrochemical detector, and by capillary gas chromatography combined with mass spectrometry. The amount of indole 3-acetic acid present was estimated to be about 1 milligram per kilogram fresh weight, with an error limit of one order of magnitude. This is in the range reported from angiosperms.  相似文献   

    13.
    Goldsmith MH 《Plant physiology》1980,66(6):1067-1073
    Conditions for obtaining reproducible light-induced reduction of a b-type cytochrome in membrane fractions from coleoptiles of dark-grown Zea mays L. include a glucose-glucose oxidase system that lowers O2 tension and generates H2O2, substrate amounts of ethylenediaminetetraacetic acid which, in some manner, facilitates photoreduction by both added flavin and the endogenous photoreceptor and a sample temperature below 10 C. Cytochrome reduction could be obtained by photoexcitation of either a tightly bound endogenous receptor, which is probably a flavin, or added riboflavin, flavin mononucleotide, or flavin adenine dinucleotide. The latter flavin was the least effective. The endogenous photoreceptor appears to be rather firmly bound to the membranes, suggesting that this association may also exist in vivo. When any of the above four photoreceptors or methylene blue were used to sensitize the reaction, a cytochrome with a reduced α-band near 560 nanometers and a Soret difference peak near 429 nanometers was the electron acceptor. This cytochrome could be clearly distinguished spectrally from other cytochromes that predominated in the membrane preparations.  相似文献   

    14.
    Assembly of iron-sulfur (Fe-S) clusters and maturation of Fe-S proteins in vivo require complex machineries. In Escherichia coli, under adverse stress conditions, this process is achieved by the SUF system that contains six proteins as follows: SufA, SufB, SufC, SufD, SufS, and SufE. Here, we provide a detailed characterization of the SufBCD complex whose function was so far unknown. Using biochemical and spectroscopic analyses, we demonstrate the following: (i) the complex as isolated exists mainly in a 1:2:1 (B:C:D) stoichiometry; (ii) the complex can assemble a [4Fe-4S] cluster in vitro and transfer it to target proteins; and (iii) the complex binds one molecule of flavin adenine nucleotide per SufBC2D complex, only in its reduced form (FADH2), which has the ability to reduce ferric iron. These results suggest that the SufBC2D complex functions as a novel type of scaffold protein that assembles an Fe-S cluster through the mobilization of sulfur from the SufSE cysteine desulfurase and the FADH2-dependent reductive mobilization of iron.  相似文献   

    15.
    The technique of pulse radiolysis with spectrophotometric detection has been used to investigate the possibility of electron transfer reactions between oxidizing sulfur–sulfur three-electron-bond complexes (Met2/S∴S+), or reducing α-amino radicals (CH3SCH2CH2CHNH2) derived from reaction of methionine with OH radicals and hydroxycinnamic acid (HCA) derivatives, riboflavin (RF) or flavin adenine dinucleotide (FAD), respectively. The HCA derivatives, such as caffeic acid, ferulic acid, sinapic acid and chlorogenic acid, widely distributed phenolic acids in fruit and vegetables, have been identified as good antioxidants previously can rapidly and efficiently repair oxidizing three-electron-bond complexes via electron transfer. RF and FAD can oxidize reducing α-amino radicals derived from methionine. The electron transfer rate constants ∼109 dm3 mol−1 s−1 were determined by following the build-up kinetics of species produced.  相似文献   

    16.
    Four structurally diverse complexes, [Cd(dppz)(bdoa)]n (1), [Zn(dppz)(bdoa)(H2O)]n (2), [Fe(dppz)2(bdoa)]n·2nH2O (3), and [Co2(dppz)2(bdoa)2(H2O)]n·3nH2O (4), where H2bdoa = benzene-1,4-dioxyacetic acid and dppz = dipyrido[3,2-a:2′,3′-c]phenazine, have been hydrothermally synthesized. Compounds 1-4 feature chain structures. There exist π-π interactions in the structures of 1, 2 and 4. Two neighboring chains of 1 are linked through the π-π interactions into a double chain supramolecular structure. The chains of 2 and 4 are further extended by the π-π interactions to form 3D and 2D supramolecular structures, respectively. The structural differences among such complexes show that the transition metals have important influences on their structures. The photoluminescent property of complex 2 and the magnetic property of complex 4 have also been investigated.  相似文献   

    17.
    Hydrogenase activity and the H2-fumarate electron transport system in a carbohydrate-fermenting obligate anaerobe, Bacteroides fragilis, were investigated. In both whole cells and cell extracts, hydrogenase activity was demonstrated with methylene blue, benzyl viologen, flavin mononucleotide, or flavin adenine dinucleotide as the electron acceptor. A catalytic quantity of benzyl viologen or ferredoxin from Clostridium pasteurianum was required to reduce nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate with H2. Much of the hydrogenase activity appeared to be associated with the soluble fraction of the cell. Fumarate reduction to succinate by H2 was demonstrable in cell extracts only in the presence of a catalytic quantity of benzyl viologen, flavin mononucleotide, flavin adenine dinucleotide, or ferredoxin from C. pasteurianum. Sulfhydryl compounds were not required for fumarate reduction by H2, but mercaptoethanol and dithiothreitol appeared to stimulate this activity by 59 and 61%, respectively. Inhibition of fumarate reduction by acriflavin, rotenone, 2-heptyl-4-hydroxyquinoline-N-oxide, and antimycin A suggest the involvement of a flavoprotein, a quinone, and cytochrome b in the reduction of fumarate to succinate. The involvement of a quinone in fumarate reduction is also apparent from the inhibition of fumarate reduction by H2 when cell extracts were irradiated with ultraviolet light. Based on the evidence obtained, a possible scheme for the flow of electrons from H2 to fumarate in B. fragilis is proposed.  相似文献   

    18.
    Bud break and multiple shoots were induced in apical and axillary meristems derived from 10-d old seedlings of Madhuca longifolia var. latifolia on Murashige and Skoog (MS) medium supplemented with 1.0 mg/l N6-benzyladenine (BA) singly or in combinatiobn with 1-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Excised shoots were rooted on half-strength MS with IBA (1.0 mg/l) after 18d of culture. Regenerated plantlets were acclimatized and successfully transferred to soil.Abbreviations BA N6 benzyladenine - KN kinetin - ADS adenine sulphate - IBA indole-3-butyric acid - IAA indole3-acetic acid - NAA 1-naphthaleneacetic acid - MS Murashige and Skoog (1962) medium  相似文献   

    19.
    Electron transfer pathways in photosynthesis involve interactions between membrane-bound complexes such as reaction centres with an extrinsic partner. In this study, the biological specificity of electron transfer between the reaction centre-light-harvesting 1-PufX complex and its extrinsic electron donor, cytochrome c 2, formed the basis for mapping the location of surface-attached RC-LH1-PufX complexes using atomic force microscopy (AFM). This nano-mechanical mapping method used an AFM probe functionalised with cyt c 2 molecules to quantify the interaction forces involved, at the single-molecule level under native conditions. With surface-bound RC-His12-LH1-PufX complexes in the photo-oxidised state, the mean interaction force with cyt c 2 is approximately 480 pN with an interaction frequency of around 66 %. The latter value lowered 5.5-fold when chemically reduced RC-His12-LH1-PufX complexes are imaged in the dark to abolish electron transfer from cyt c 2 to the RC. The correspondence between topographic and adhesion images recorded over the same area of the sample shows that affinity-based AFM methods are a useful tool when topology alone is insufficient for spatially locating proteins at the surface of photosynthetic membranes.  相似文献   

    20.
    The complexes [Me2(Meclo)SnOSn(Meclo)Me2]2 (2) and [Ph3Sn(Meclo)] (3) where HMeclo is meclofenamic acid, N-(2,6-dichloro-m-tolylanthranilic acid)], have been prepared and structurally characterized by means of vibrational, 1H and 13C NMR spectroscopies. The crystal structure of complexes (2) and (3) have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement of (2). The structure is centro symmetric and features a central rhombus Sn2O2 unit two additional tin atoms linked at the oxygen atoms. Five- and six-coordinated tin centers are present in the dimer distannoxane. X-ray analysis of (3) revealed a penta-coordinated structure containing Ph3Sn coordinated to the chelated carboxylato group. The polar imino hydrogen atom participates in intra-molecular hydrogen bonds. Complexes (2) and (3) are self-assembled via π → π, C-H-π, stacking interactions and intra-molecular hydrogen bonds. Meclofenamic acid and [Ph3Sn(Meclo)] have been evaluated for antiproliferative activity in vitro against three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse L-929 (a fibroblast-like cell line cloned from strain L). The [Ph3Sn(Meclo)] complex exhibited high cytotoxic activity against all the cancer cell lines. Meclofenamic and [Ph3Sn(Meclo)] were tested for anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv. The [Ph3Sn(Meclo)] complex was found to be a promising anti-mycobacterial lead compound, displaying high activity against M. tuberculosis H37Rv.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号