首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some isolates of the fungus Nectria haematococca Berk. and Br. can demethylate pisatin, a phytoalexin from pea (Pisum sativum L.). Pisatin demethylation appears to be necessary for tolerance to pisatin and virulence on pea, and is catalyzed by a microsomal cytochrome P-450. We now report solubilization of this enzyme from N. haematococca microsomes. Pisatin demethylase activity was obtained in the high speed supernatant of detergent treated microsomes, if detergent was removed before assay. The CO-binding spectrum of the soluble enzyme preparation indicated the presence of cytochrome P-450. Cholic acids were the most effective of the detergents tested for solubilizing enzyme activity. Loss of enzyme activity during solubilization was reduced by certain protease inhibitors, but not by substrate, reducing agents, antioxidants, or phospholipids. The most effective solubilization medium tested was 1% sodium cholate, 100 millimolar potassium phosphate, 500 millimolar sucrose, 1 millimolar phenylmethylsulfonyl fluoride, pH 7.5, which yielded approximately 30% of the pisatin demethylase and over 95% of the NADPH-cytochrome c reductase in the soluble fraction. Demethylase activity was lost when the reductase was removed by adsorption on 2′,5′-ADP-agarose. The demethylase activity of reductase-free fractions could be restored by adding a reductase preparation purified approximately 100-fold from microsomes of N. haematococca isolate 74-8-1, which does not demethylate pisatin. We conclude that pisatin demethylase requires NADPH-cytochrome c reductase for activity. The inability of some isolates to demethylate pisatin appears to be due to the absence of a suitable cytochrome P-450, rather than to a lack of functional reductase.  相似文献   

2.
Many fungi that are pathogenic on pea have the ability to demethylate and thus detoxify the pea phytoalexin pisatin. This detoxification reaction has been studied most thoroughly in Nectria haematococca MP VI where it functions as a virulence trait. The enzyme catalyzing this reaction [pisatin demethylase (pda)] is a cytochrome P450. In the current study, the induction of whole-cell pda activity and the biochemical properties of pda in microsomal preparations from the pea pathogens Ascochyta pisi, Mycosphaerella pinodes, and Phoma pinodella are compared to the pda produced by N. haematococca. Based on cofactor requirements and their inhibition by carbon monoxide, cytochrome P450 inhibitors, and antibodies to NADPH:cytochrome P450 reductase, we conclude that the pdas from the other pea pathogens also are cytochrome P450s. All of the enzymes show a rather selective induction by pisatin, have a low K(m) toward pisatin, and have a fairly high degree of specificity toward pisatin as a substrate, suggesting that each pathogen may have a specific cytochrome P450 for detoxifying this plant antibiotic. Since the pdas in these fungi differ in their pattern of sensitivity to P450 inhibitors and display other minor biochemical differences, we suggest that these fungi may have independently evolved a specialized cytochrome P450 as a virulence trait for a common host.  相似文献   

3.
Pea plants produce the antibiotic (+)pisatin in response to infection by the fungus Nectria haematococca, which can detoxify pisatin utilizing a cytochrome P450 monooxygenase called pisatin demethylase. Genes (PDA) have been identified that encode different whole-cell Pda phenotypes that can be distinguished by the length of the lag period and the resulting amount of enzyme activity produced: PdaSH = short lag, high activity; PdaSM = short lag, moderate activity; and PdaLL = long lag, low activity. Only the PdaSH and PdaSM phenotypes have been correlated with pathogenicity on pea. In this study, we utilize heterologous expression of the PDA LL gene PDA6-1 in Aspergillus nidulans to compare the biochemical properties of the product of this gene with the products of the PDA SH gene PDA1 expressed in N. haematococca. Preliminary measurements were also done on the PDA SM gene PDA5 expressed in N. haematococca. The PDA gene products differed somewhat in their substrate specificity and in their sensitivity to a few cytochrome P450 inhibitors. However, the enzymes produced by PDA6-1 and PDA1 both had low apparent K m values toward (+)pisatin (< 0.25 μM) and a common high degree of insensitivity to most P450 inhibitors, suggesting similar shared biochemical traits as would be expected of products of a highly homologous gene family. Our results indicate that the different whole-cell phenotypes of N. haematococca are not due to significant differences in the biochemical properties of the gene products and are consistent with recent results that indicate that the phenotypic differences are due to different degrees of expression of the genes. Received: 6 October 1997 / Accepted: 13 May 1998  相似文献   

4.
The gene PDAT9 from the fungus Nectria haematococca encodes pisatin demethylase, an enzyme that detoxifies the phytoalexin pisatin, an antimicrobial compound produced by pea in response to infection by this plant pathogen. PDAT9 was found to contain an open reading frame (ORF) encoding 515 amino acids and four introns of 52–58 nucleotides each within its coding region. The amino acid sequence F-G-A-G-S-R-S-C-I-G, indicative of the fifth ligand binding site present in all cytochrome P454s, occurs as residues 446 to 455, confirming that PDAT9 is a cytochrome P450. The deduced amino acid sequence is distinct from all other reported cytochrome P-450s, and PDAT9 has been assigned to a new cytochrome P450 family, CYP57. A 1.3 kb SacI fragment of the PDAT9 ORF that lacked the fifth ligand binding site, hybridized to unique DNA fragments in N. haematococca isolates known to possess PDA genes that encode different whole cell phenotypes for pisatin demethylating activity. These genes were also tentatively identified as cytochrome P450s by the hybridization of the same fragments to separate subclones of PDAT9, one of which contained the fifth ligand sequence. That probe also hybridized to DNA other than that attributed to pisatin demethylase genes; these other DNAs are presumed to represent other cytochrome P450s.  相似文献   

5.
A mycelial suspension of Nectria haematococca completely demethylated 0.1 mM pisatin in 2 h in a medium free of other carbon sources while no demethylation of pisatin by the fungus occurred in 6 h when 2% glucose was in the medium. Prior exposure of the fungal cells to pisatin in glucosefree medium markedly enhanced the rate of pisatin demethylation, with maximum stimulation occurring 5–9h after the initial exposure. The stimulation of pisatin demethylating ability was relatively specific for pisatin as the inducer. Out of a large variety of isoflavonoids tested the only compounds other than pisatin that stimulated the activity significantly were pterocarpan or isoflavan derivatives. Protoplasts with pisatin demethylating ability were isolated from pisatin-treated mycelium. Attempts to obtain a cell-free system with pisatin demethylating ability from these protoplasts were unsuccessful.  相似文献   

6.
Summary The ability to detoxify the phytoalexin, pisatin, an antimicrobial compound produced by pea (Pisum sativum L.), is one requirement for pathogenicity of the fungus Nectria haematococca on this plant. Detoxification is mediated by a cytochrome P-450, pisatin demethylase, encoded by any one of six Pda genes, which differ with respect to the inducibility and level of pisatin demethylase activity they confer, and which are associated with different levels of virulence on pea. A previously cloned Pda gene (PdaT9) was used in this study to characterize further the known genes and to identify additional members of the Pda family in this fungus by Southern analysis. DNA from all isolates which demethylate pisatin (Pda+ isolates) hybridized to PdaT9, while only one Pda isolate possessed DNA homologous to the probe. Hybridization intensity and, in some cases, restriction fragment size, were correlated with enzyme inducibility. XhoI/BamHI restricted DNA from reference strains with a single active Pda allele had only one fragment with homology to PdaT9; no homology attributable to alleles associated with the Pda phenotype was found. Homology to this probe was also limited to one or two restriction fragments in most of the 31 field isolates examined. Some unusual progeny from laboratory crosses that failed to inherit demethylase activity also lost the single restriction fragment homologous to PdaT9. At the chromosome level, N. haematococca is highly variable, each isolate having a unique electrophoretic karyotype. In most instances, PdaT9 hybridized to one or two chromosomes containing 1.6–2 million bases of DNA, while many Pda- isolates lacked chromosomes in this size class. The results from this study of the Pda family support the hypothesis that deletion of large amounts of genomic DNA is one mechanism that reduces the frequency of Pda genes in N. haematococca, while simultaneously increasing its karyotypic variation.  相似文献   

7.
A potent inhibitor of microsomal mixed-function oxidation reactions in insects had previously been isolated and partially purified from the gut contents of Prodenia eridania and shown to be associated with proteinase activity. Incubation of rat liver microsomal fraction with low concentrations of this inhibitor led to solubilization of NADPH–cytochrome c reductase, which was paralleled by the inactivation of reduction of cytochrome P-450 by NADPH and by the inhibition of NADPH-linked benzo[3,4]pyrene hydroxylation and aminopyrine demethylation. There was little or no effect on cytochromes b5 and P-450, nor was the capacity of the latter catalyst to combine with exogenous substrates decreased. Contrary to the findings with NADPH, preincubation of microsomal fraction with the inhibitor did not cause a significant decrease in the rate of cytochrome P-450 reduction by NADH, supporting the assumption that different catalysts are involved in the electron transfer from NADH and NADPH to cytochrome P-450. The findings indicate the importance of taking the possible presence of endogenous inhibitors into consideration when evaluating low or absent mixed-function oxidation activities found in insect systems in vitro.  相似文献   

8.
Detoxification of the pea phytoalexin pisatin via demethylation, mediated by a cytochrome P-450 monooxygenase, is thought to be important for pathogenicity of the fungus Nectria haematococca on pea. To isolate a fungal gene encoding pisatin demethylating activity (pda), we transformed Aspergillus nidulans with a genomic library of N. haematococca DNA constructed in a cosmid which carried the A. nidulans trpC gene. Transformants were selected for Trp+ and then screened for pda. One transformant among 1250 tested was Pda+ and was less sensitive to pisatin in culture than Pda- A. nidulans. The cosmid containing the gene (PDA) conferring this activity was recovered by phage lambda packaging of transformant genomic DNA. When A. nidulans was transformed with the cloned cosmid, 98% of the Trp+ transformants were Pda+. RNA blots probed with a 3.35 kb subclone carrying PDA indicated that the gene is expressed constitutively in A. nidulans but is inducible by pisatin in N. haematococca.  相似文献   

9.
The fungal plant pathogen Nectria haematococca MPVI produces a cytochrome P450 that is responsible for detoxifying the phytoalexin pisatin, produced as a defense mechanism by its host, garden pea. In this study, we demonstrate that this fungus also produces a specific ATP-binding cassette (ABC) transporter, NhABC1, that enhances its tolerance to pisatin. In addition, although both mechanisms individually contribute to the tolerance of pisatin and act as host-specific virulence factors, mutations in both genes render the fungus even more sensitive to pisatin and essentially nonpathogenic on pea. NhABC1 is rapidly induced after treatment with pisatin in vitro and during infection of pea plants. Furthermore, NhABC1 was able to confer tolerance to the phytoalexin rishitin, produced by potato. NhABC1 appears to be orthologous to GpABC1 of the potato pathogen Gibberella pulicaris and, along with MoABC1 from Magnaporthe oryzae, resides in a phylogenetically related clade enriched with ABC transorters involved in virulence. We propose that NhABC1 and the cytochrome P450 may function in a sequential manner in which the energy expense from pisatin efflux by NhABC1 releases the repression of the cytochrome P450, ultimately allowing pisatin tolerance by two mechanisms. These results demonstrate that a successful pathogen has evolved multiple mechanisms to overcome these plant antimicrobial compounds.  相似文献   

10.
A reconstituted mixed-function oxidase system, containing the major β-naphthoflavone-induced isozyme of rat liver cytochrome P-450 bound benzo[a]pyrene covalently in the presence of NADPH. NADPH-cytochrome P-450 reductase was required for binding and a maximum rate of adduct formation was obtained at 8 units of reductase per nmol cytochrome P-450. Phosphatidylcholine inhibited this reaction. Benzo[a]pyrene was bound to the cytochrome, but not to the reductase, as shown by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Approximately 6 molecules of benzo[a]pyrene bound to each molecule cytochrome P-450 during prolonged incubations. No binding occurred when the β-naphthoflavone-induced isozyme of cytochrome P-450 was replaced by the major isozyme induced by phenobarbital, but both cytochromes incorporated benzo[a]pyrene to approximately the same extent when they were incubated together in the presence of the reductase and NADPH. Metabolically activated benzo[a]pyrene also bound covalently to purified epoxide hydrodrolase, when this enzyme was added to the reconstituted mixed-function oxidase system.  相似文献   

11.
12.
The liver microsomal enzyme system that catalyzes the oxidation of NADPH by organic hydroperoxides has been solubilized and resolved by the use of detergents into fractions containing NADPH-cytochrome c reductase, cytochrome P-450 (or P-448), and microsomal lipid. Partially purified cytochromes P-450 and P-448, free of the reductase and of cytochrome b5, were prepared from liver microsomes of rats pretreated with phenobarbital (PB) and 3-methylcholanthrene (3-MC), respectively, and reconstituted separately with the reductase and lipid fractions prepared from PB-treated animals to yield enzymically active preparations functional in cumene hydroperoxide-dependent NADPH oxidation. The reductase, cytochrome P-450 (or P-448), and lipid fractions were all required for maximal catalytic activity. Detergent-purified cytochrome b5 when added to the complete system did not enhance the reaction rate. However, the partially purified cytochrome P-450 (or P-448) preparation was by itself capable of supporting the NADPH-peroxidase reaction but at a lower rate (25% of the maximal velocity) than the complete system. Other heme compounds such as hematin, methemoglobin, metmyoglobin, and ferricytochrome c could also act as comparable catalysts for the peroxidation of NADPH by cumene hydroperoxide and in these reactions, NADH was able to substitute for NADPH. The microsomal NADH-dependent peroxidase activity was also reconstituted from solubilized components of liver microsomes and was found to require NADH-cytochrome b5 reductase, cytochrome P-450 (or P-448), lipid, and cytochrome b5 for maximal catalytic activity. These results lend support to our earlier hypothesis that two distinct electron transport pathways operate in NADPH- and NADH-dependent hydroperoxide decomposition in liver microsomes.  相似文献   

13.
Some isolates of the plant-pathogenic fungus Nectria haematococca mating population (MP) VI metabolize maackiain and medicarpin, two antimicrobial compounds (phytoalexins) synthesized by chickpea (Cicer arietinum L.). The enzymatic modifications by the fungus convert the phytoalexins to less toxic derivatives, and this detoxification has been proposed to be important for pathogenesis on chickpea. In the present study, loci controlling maackiain metabolism (Mak genes) were identified by crosses among isolates of N. haematococca MP VI that differed in their ability to metabolize the phytoalexin. Strains carrying Mak1 or Mak2 converted maackiain to 1a-hydroxymaackiain, while those with Mak3 converted it to 6a-hydroxymaackiain. Mak1 and Mak2 were unusual in that they often failed to be inherited by progeny. Mak1 was closely linked to Pda6, a new member in a family of genes in N. haematococca MP VI that encode enzymes for detoxification of pisatin, the phytoalexin synthesized by garden pea. Like Mak1, Pda6 was also transmitted irregularly to progeny. Although the unusual meiotic behaviors of some Mak genes complicate genetic analysis, identification of these genes should afford a more through evaluation of the role of phytoalexin detoxification in the pathogenesis of N. haematococca MP VI on chickpea.  相似文献   

14.
A reconstituted mixed-function oxidase system containing cytochrome P-450, cytochrome P-450 reductase, phosphatidylcholine, and NADPH catalyzed the reduction of 13-hydroperoxy-9,11-octadecadienoic acid to 13-hydroxy-9,ll-octadecadienoic acid. Activity was stimulated by the addition of type I substrates, while carbon monoxide and oxygen inhibited the reaction. Perfluoro-n-hexane stimulated the reduction of lipid hydroperoxide to lipid alcohol in the reconstituted system but not by cytochrome P-450 alone. Incubation of cytochrome P-450 with only lipid hydroperoxide resulted in destruction of the hemoprotein. Addition of substrates such as aminopyrine decreased cytochrome P-450 destruction. Addition of reducing equivalents from a reconstituted electron transport system also decreased cytochrome P-450 destruction.  相似文献   

15.
Ethanol oxidation activity has been reconstituted in a system composed of NADPH-cytochrome c reductase, synthetic dilauroylglycerol-3-phosphorylcholine and cytochrome P-450 purified from liver microsomes of phenobarbital-treated rats. This system is free of alcohol dehydrogenase and catalase activities. Furthermore, sodium azide (1 mm), a catalase inhibitor, is without effect on ethanol metabolism. There is a requirement for both NADPH-cytochrome c reductase and cytochrome P-450 and a partial requirement for phospholipid for ethanol oxidation by the reconstituted system. In addition, both NADPH and O2 are required for catalysis. Under optimal reaction conditions, the rate of acetaldehyde formation if 25 to 50 nmol/min/nmol of cytochrome P-450. Cytochrome P-450 from other sources, including the homogeneous P-450LM2 from phenobarbital-treated rabbits, have also been found to catalyze ethanol oxidation in reconstituted systems. Antibody prepared against cytochrome P-450 inhibits ethanol metabolism in the reconstituted system consistent with a cytochrome P-450-mediated reaction. Furthermore, cumene hydroperoxide can replace both NADPH and NADPH-cytochrome c reductase in ethanol oxidation and catalysis can be demonstrated in a system composed of only cytochrome P-450, lipid, ethanol, and cumene hydroperoxide. These data implicate cytochrome P-450 in the direct oxidation of ethanol by this system.  相似文献   

16.
Adrenocortical mitochondrial cytochrome P?450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11β-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0°C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11β-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents.Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

17.
Cinnamic acid is hydroxylated by the mixed-function oxidase trans-cinnamic acid 4-hydroxylase (CA4H). The hydroxylation reaction involves the transfer of electrons from reduced pyridine nucleotides via the enzyme NADPH cytochrome P-450 reductase to the terminal oxidase cytochrome P-450. This multi-enzyme complex is localized in the microsomal fraction. Isopycnic and velocity gradient centrifugation suggest that in the apical bud of etiolated pea seedlings this complex is restricted to the endoplasmic reticulum membranes. CA4H activity which develops in dark germinating pea seedlings was found to be stimulated by light, an effect mediated by phytochrome. CA4H and NADPH cytochrome c reductase activities, cytochromes P-450 and b 5 contents were measured in seedlings submitted to either short pulses of red and far-red light, or to continuous far-red or blue irradiation. The results are discussed in terms of a specific effect of phytochrome on the different parts of the multi-enzyme complex.  相似文献   

18.
Hypolipidaemic drugs induce peroxisomal proliferation in the liver and many induce the formation of the hepatic endoplasmic reticulum in general and the formation of cytochrome P-450 in particular. We have induced the formation of rat liver microsomal cytochrome P-450 by the administration of the hypolipidaemic drug clofibrate, isolated the endoplasmic reticulum, solubilized the cytochrome P-450 from these membranes and subdivided the cytochrome P-450 into four fractions by the use of hydrophobic, anionic, cationic and adsorption chromatography. One of these fractions (cytochrome P-450 fraction 1) was highly purified to a specific content of 17nmol of cytochrome P-450/mg of protein and the protein was active in a reconstituted enzyme system towards the 12- and 11-hydroxylation of the fatty acid, dodecanoic (lauric) acid, with preferential activity towards the 12-hydroxy metabolite. This reconstituted activity was absolutely dependent on NADPH, NADPH-cytochrome P-450 reductase and cytochrome P-450, indicating the role of the mixed-function oxidase system in the metabolism of lauric acid. Another fraction of the haemoprotein (cytochrome P-450 fraction 2) preferentially formed 11-hydroxylauric acid, whereas a third fraction (cytochrome P-450 fraction 3) exhibited only trace laurate oxidase activity and was similar to the phenobarbitone form of the haemoprotein in that these last two cytochromes rapidly turned-over the drug benzphetamine. The molecular weights and spectral properties of these cytochrome P-450 fractions are reported, along with the phenobarbitone-induced form of the enzyme and the nature of the cytochrome(s) induced by clofibrate pretreatment are discussed in the terms of possible haemoprotein heterogeneity.  相似文献   

19.
Incubation in the presence of NADPH and molecular oxygen of 14C-labeled polychlorinated biphenyls (PCBs) and two tetrachlorobiphenyl (TCB) isomers with a reconstituted system containing NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital(PB)-pretreated rabbits, led to covalent binding of radioactive metabolites of PCBs and TCBs to the protein components of the system. A rabbit liver cytosol fraction added to the system provided more binding sites for the activated metabolites and thus increased the extent of binding markedly. The binding reaction depended absolutely on the reductase, cytochrome P-450 and NADPH, and required dilauroyl phosphatidylcholine and sodium cholate for maximal activity. A further stimulation of the binding was attained by including cytochrome b5 in the reconstituted system. Four forms of cytochrome P-450, purified from liver microsomes of PB- and 3-methylcholanthrene(MC)-treated rabbits and rats, were used to reconstitute the PCB- and TCB-metabolizing systems, and it was found that PB-inducible forms of the cytochrome from both animals were more active than those inducible by MC in catalyzing the PCB- and TCB-binding reaction. Sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis indicated that, in the system containing the reductase, cytochrome P-450 and cytochrome b5, PCB metabolites bound to the reductase and cytochrome P-450, but not to cytochrome b5. In the presence of the liver cytosol fraction, the binding took place to many cytosolic proteins in addition to the reductase and cytochrome P-450.  相似文献   

20.
The nitrosoureas, CCNU (1-(2-chloroethyl)-3-(cyclohexyl)-1-nitrosourea) and BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) are representatives of a class of N-nitroso compounds which undergo denitrosation in the presence of NAD(P)H and deoxygenated hepatic microsomes from rats to yield nitric oxide (NO) and the denitrosated parent compound. Formation of NO during microsomal denitrosation of CCNU and BCNU was determined by three methods. With one procedure, NO was measured and concentration shown to increase over time in the head gas above microsomal incubations with BCNU. Two additional methods utilized NO binding to either ferrous cytochrome P-450 or hemoglobin to form distinct Soret maxima at 444 and 415 nm, respectively. Incubation of either BCNU or CCNU in the presence of NAD(P)H and deoxygenated microsomes resulted in the formation of identical cytochrome P-450 ferrous · NO optical difference spectra. Determination of the P-450 ferrous · NO extinction coefficient by the change in absorbance at 444 minus 500 nm allowed measurement of rates of denitrosation by monitoring the increase in absorbance at 444 nm. The rates of BCNU and CCNU denitrosation were determined to be 4.8 and 2.0 nmol NO/min/mg protein, respectively, for phenobarbital (PB) induced microsomes. For the purpose of comparison, the rate of [14C]CCNU (1-(2-[14C]chloroethyl)-3-(cyclohexyl)-1-nitrosourea turnover was examined by the isolation of [14C]CCU (1-(2-[14C] chloroethyl)-3-(cyclohexyl)-1-urea) from incubations that contained NADPH and deoxygenated PB-induced microsomes. These analyses showed stoichiometric amounts of NO and [14C]CCU being formed at a rate of 2.0 nmol/min/mg protein. Denitrosation catalysis by microsomes was enhanced by phenobarbital pretreatment and partially decreased by cytochrome P-450 inhibitors, SKF-525A, α-naphthoflavone (ANF), metyrapone, and CO, suggesting a cytochrome P-450-dependent denitrosation. However, in the presence of NADPH and purified NADPH cytochrome P-450 reductase reconstituted in dilauroylphosphatidylcholine, [14C]CCNU was shown to undergo denitrosation to [14C]CCU. Thus, NADPH cytochrome P-450 reductase could support denitrosation in the absence of cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号