首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N epsilon-glycosylation of lysine and hydroxylysine residues in collagen from streptozotocin-induced-diabetic rats was confirmed and the stability of the complex shown to be due to an Amadori rearrangement. The studies also demonstrate the relative specificities of glucose, galactose and mannose in their reaction with collagen. The glycosylation of lysine in vitro occurs with glucose and galactose, but not with mannose, whereas only gucose reacts with hydroxylysine to any significant extent. Glycosylation of collagen occurs slowly during normal aging, but in contrast with reports suggesting accelerated aging of collagen in diabetic animals, we clearly demonstrated that the apparent increased stability is not due to an acceleration of the normal maturation process involving the reducible cross-links.  相似文献   

2.
The subcellular location at which hydroxylysine residues of collagen are glycosylated was studied in chick embryo fibroblasts. Ribosomes were isolated from 14C-lysine pulse-labeled cells in tissue culture. Alkaline hydrolysis followed by amino acid analysis and scintillation counting of the effluent showed that glucosylgalactosyl hydroxylysine and galactosyl hydroxylysine as well as hydroxylysine and lysine were the major 14C-labeled components. Acid hydrolysis destroyed the glycoconjugates and yielded only free 14C-hydroxylysine and 14C-lysine. These data indicate that glycosylation of peptide-bound hydroxylysine is initiated while the polypeptide chain is still in the stages of assembly on the ribosome.  相似文献   

3.
THE prostaglandins (PG) are possible mediators of inflammation. Prostaglandins E and F are present in inflammatory exudates1–3 and could be related to the increase of collagen biosynthesis associated with inflammation. Vane and his colleagues4–6 recently observed that indomethacin, aspirin and sodium salicylate potently block the biosynthesis of prostaglandins. These anti-inflammatory drugs are also inhibitors of collagen biosynthesis7,8. Morphological studies9 have revealed increased deposition of collagen or collagen-related elements in organ cultures of chick embryo skin containing prostaglandins E1 and B1. We report here results which indicate stimulation of collagen biosynthesis by prostaglandins E1 and F evaluated by hydroxylation of proline and lysine and glycosylation of hydroxylysine in 10 day chick embryo tibiae.  相似文献   

4.
Collagens, the most abundant proteins in animals, are modified by hydroxylation of proline and lysine residues and by glycosylation of hydroxylysine. Dedicated prolyl hydroxylase, lysyl hydroxylase, and collagen glycosyltransferase enzymes localized in the endoplasmic reticulum mediate these modifications prior to the formation of the collagen triple helix. Whereas collagen-like proteins have been described in some fungi, bacteria, and viruses, the post-translational machinery modifying collagens has never been described outside of animals. We demonstrate that the L230 open reading frame of the giant virus Acanthamoeba polyphaga mimivirus encodes an enzyme that has distinct lysyl hydroxylase and collagen glycosyltransferase domains. We show that mimivirus L230 is capable of hydroxylating lysine and glycosylating the resulting hydroxylysine residues in a native mimivirus collagen acceptor substrate. Whereas in animals from sponges to humans the transfer of galactose to hydroxylysine in collagen is conserved, the mimivirus L230 enzyme transfers glucose to hydroxylysine, thereby defining a novel type of collagen glycosylation in nature. The presence of hydroxylysine in mimivirus proteins was confirmed by amino acid analysis of mimivirus recovered from A. polyphaga cultures. This work shows for the first time that collagen post-translational modifications are not confined to the domains of life. The utilization of glucose instead of the galactose found throughout animals as well as a bifunctional enzyme rather than two separate enzymes may represent a parallel evolutionary track in collagen biology. These results suggest that giant viruses may have contributed to the evolution of collagen biology.  相似文献   

5.
N epsilon-(Carboxymethyl)lysine (CML) is formed on oxidative cleavage of carbohydrate adducts to lysine residues in glycated proteins in vitro [Ahmed et al. (1988) J. Biol. Chem. 263, 8816-8821; Dunn et al. (1990) Biochemistry 29, 10964-10970]. We have shown that, in human lens proteins in vivo, the concentration of fructose-lysine (FL), the Amadori adduct of glucose to lysine, is constant with age, while the concentration of the oxidation product, CML, increases significantly with age [Dunn et al. (1989) Biochemistry 28, 9464-9468]. In this work we extend our studies to the analysis of human skin collagen. The extent of glycation of insoluble skin collagen was greater than that of lens proteins (4-6 mmol of FL/mol of lysine in collagen versus 1-2 mmol of FL/mol of lysine in lens proteins), consistent with the lower concentration of glucose in lens, compared to plasma. In contrast to lens, there was a slight but significant age-dependent increase in glycation of skin collagen, 33% between ages 20 and 80. As in lens protein, CML, present at only trace levels in neonatal collagen, increased significantly with age, although the amount of CML in collagen at 80 years of age, approximately 1.5 mmol of CML/mol of lysine, was less than that found in lens protein, approximately 7 mmol of CML/mol of lysine. The concentration of N epsilon-(carboxymethyl)hydroxylysine (CMhL), the product of oxidation of glycated hydroxylysine, also increased with age in collagen, in parallel with the increase in CML, from trace levels at infancy to approximately 5 mmol of CMhL/mol of hydroxylysine at age 80.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The present study was designed to investigate the effects of aging on preferential sites of glucose adduct formation on type I collagen chains. Two CNBr peptides, one from each type of chain in the type I tropocollagen molecule, were investigated in detail: alpha 1(I)CB3 and alpha 2CB3-5. Together these peptides comprise approximately 25% of the total tropocollagen molecule. The CNBr peptides were purified from rat tail tendon, obtained from animals aged 6, 18, and 36 months, by ion exchange chromatography, gel filtration, and high-performance liquid chromatography (HPLC). Sugar adducts were radiolabeled by reduction with NaB3H4. Glycated tryptic peptides were prepared from tryptic digests of alpha 2CB3-5 and alpha 1(I)CB3 by boronate affinity chromatography and HPLC. Peptides were identified by sequencing and by compositional analysis. Preferential sites of glycation were observed in both CB3 and alpha 2CB3-5. Of the 5 lysine residues in CB3, Lys-434 was the favored glycation site. Of the 18 lysine residues and 1 hydroxylysine residue in alpha 2CB3-5, 3 residues (Lys-453, Lys-479, and Lys-924) contained more than 80% of the glucose adducts on the peptide. Preferential glycation sites were highly conserved with aging. In collagen that had been glycated in vitro, the relative distribution of glucose adducts in old animals differed from that of young animals. In vitro experiments suggest that primary structure is the major determinant of preferential glycation sites but that higher order structure may influence the relative distribution of glucose adducts among these preferred sites.  相似文献   

7.
Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998–23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen.  相似文献   

8.
The biosynthesis in vivo of the two reducible aldimine crosslinks of immature rabbit articular collagen, hydroxylysinohydroxynorleucine and hydroxylysinonorleucine, is demonstrated. The peak amount of crosslink was detected 1–2 weeks following labeling of the cartilage with [14C]lysine. The subsequent diminution which occurred was due primarily to a decrease in the amount of hydroxylysinohydroxynorleucine. Natural reduction of the aldimine crosslinks in vivo did not occur. Glucosylgalactosyl hydroxylysine and galactosylhydroxylysine, in a 1.451.00 ratio, were synthesized. Seventy-three percent of the hydroxylysine residues were glycosylated. [3H]NaBH4 reduction of non-14C-labeled cartilage showed diminished amounts of reducible crosslink with time and the presence of hexosyl lysines and hexosyl hydroxylysines in mature articular cartilage.  相似文献   

9.
Rapid assay for lysyl-protocollagen hydroxylase activity   总被引:4,自引:0,他引:4  
A method for the assay of lysyl-protocollagen hydroxylase activity is described. This method depends upon the formation of tritiated water when lysine residues of 4,5-3H-lysyl-protocollagen are hydroxylated. The labeled protocollagen was prepared from carrageenan induced guinea pig granuloma tissue. There was a linear relationship between the amount of tritiated water and tritiated hydroxylysine formed in this assay. The assay is reproducible and more rapid than previously described assays for lysyl-protocollagen hydroxylase. Use of this method will facilitate further studies on collagen hydroxylysine formation.  相似文献   

10.
THE hydroxyproline and hydroxylysine in collagen are synthesized by hydroxylation of proline and lysine after these amino-acids have been incorporated into peptide linkages (for review see ref. 1). Experiments with embryonic cartilage in vitro in which the hydroxylases were intermittently inhibited demonstrated that the hydroxylations can occur after the proline-rich and lysine-rich polypeptide precursor protocollagen is released from ribosomal complexes1,2. There has been controversy, however, over the question of whether in uninhibited systems the hydroxylation of the appropriate prolyl and lysyl residues occurs while nascent polypeptide chains are still being assembled on ribosomes1,3,4.  相似文献   

11.
The hydroxylation of lysine and glycosylations of hydroxylysine were studied in isolated chick-embryo tendon and cartilage cells under conditions in which collagen triple-helix formation was either inhibited or accelerated. The former situation was obtained by incubating the tendon cells with 0.6mm-dithiothreitol, thus decreasing their proline hydroxylase activity by about 99%. After labelling with [(14)C]proline, the formation of hydroxy[(14)C]proline was found to have declined by about 95%. Since the hydroxylation of a relatively large number of proline residues is required for triple-helix formation at 37 degrees C, the pro-alpha-chains synthesized under these conditions apparently cannot form triple-helical molecules. Labelling experiments with [(14)C]lysine indicated that the degree of hydroxylation of the lysine residues in the collagen synthesized was slightly increased and the degree of the glycosylations of the hydroxylysine residues more than doubled, the largest increase being in the content of glucosylgalactosylhydroxylysine. Recovery of chick-embryo cartilage cells from temporary anoxia was used to obtain accelerated triple-helix formation. A marked decrease was found in the extent of hydroxylation of the lysine residues in the collagen synthesized under these conditions, and an even larger decrease occurred in the glycosylations of the hydroxylysine residues. The results support the previous suggestion that the triple-helix formation of the pro-alpha-chains prevents further hydroxylation of lysine residues and glycosylations of hydroxylysine residues during collagen biosynthesis.  相似文献   

12.
Ribonuclease A has been used as a model protein for studying the specificity of glycation of amino groups in protein under physiological conditions (phosphate buffer, pH 7.4, 37 degrees C). Incubation of RNase with glucose led to an enhanced rate of inactivation of the enzyme relative to the rate of modification of lysine residues, suggesting preferential modification of active site lysine residues. Sites of glycation of RNase were identified by amino acid analysis of tryptic peptides isolated by reverse-phase high pressure liquid chromatography and phenylboronate affinity chromatography. Schiff base adducts were trapped with Na-BH3CN and the alpha-amino group of Lys-1 was identified as the primary site (80-90%) of initial Schiff base formation on RNase. In contrast, Lys-41 and Lys-7 in the active site accounted for about 38 and 29%, respectively, of ketoamine adducts formed via the Amadori rearrangement. Other sites reactive in ketoamine formation included N alpha-Lys-1 (15%), N epsilon-Lys-1 (9%), and Lys-37 (9%) which are adjacent to acidic amino acids. The remaining six lysine residues in RNase, which are located on the surface of the protein, were relatively inactive in forming either the Schiff base or Amadori adduct. Both the equilibrium Schiff base concentration and the rate of the Amadori rearrangement at each site were found to be important in determining the specificity of glycation of RNase.  相似文献   

13.
Type II collagen is the main structural component of hyaline cartilages where it forms networks of thin fibrils that differ in morphology from the much thicker fibrils of type I collagen. We studied here in vitro the formation of fibrils of pepsin-treated recombinant human type II collagen produced in insect cells. Two kinds of type II collagen preparation were used: low hydroxylysine collagen having 2.0 hydroxylysine residues/1,000 amino acids, including 1.3 glycosylated hydroxylysines; and high hydroxylysine collagen having 19 hydroxylysines/1,000 amino acids, including 8.9 glycosylated hydroxylysines. A marked difference in fibril formation was found between these two kinds of collagen preparation, in that the maximal turbidity of the former was reached within 5 min under the standard assay conditions, whereas the absorbance of the latter increased until about 600 min. The critical concentration with the latter was about 10-fold, and the absorbance/microgram collagen incorporated into the fibrils was about one-sixth. The morphology of the fibrils was also different, in that the high hydroxylysine collagen formed thin fibrils with essentially no interfibril interaction or aggregation, whereas the low hydroxylysine collagen formed thick fibrils on a background of thin ones. The data thus indicate that regulation of the extents of lysine hydroxylation and hydroxylysine glycosylation may play a major role in the regulation of collagen fibril formation and the morphology of the fibrils.  相似文献   

14.
To examine the effect of age on the glomerular basement membrane, compositional analyses were performed on membranes isolated in highly purified form from rats at different stages of their growth (35 to 200 days old). Substantial age-related changes were observed in the amino acid composition of the basement membranes. A significant correlation with age (P < 0.01) was evident in the contents of 3- and 4-hydroxyproline, threonine, serine, alanine, valine, half-cystine, hydroxylysine, and lysine. Of these amino acids, hydroxylysine and both isomers of hydroxyproline demonstrated a progressive increase with age, while the others were found to decline. The direct relationship of hydroxylysine content with age (P < 0.001) was associated with an inverse correlation of lysine with age (P < 0.001) so that the ratio of hydroxylysine to lysine increased in a highly significant manner from 0.92 at 35 days to 1.33 at 200 days. This elevation in the hydroxylysine content was accompanied by an augmentation in the number of saccharide units linked to it so that the percentage glycosylation of this amino acid was not significantly affected by age. The relative differences in the hydroxylysine and lysine levels between young and older rats were maintained in sodium dodecyl sulfateextracted membranes. These results suggest that the compositional changes observed during the aging process reflect an alteration in the subunit makeup of the basement membrane, possibly due to an increased synthesis or decreased degradation of the more collagen-like polypeptide components.  相似文献   

15.
Basement membrane was purified from glomeruli isolated from normal and streptozotocin-diabetic rats. After extraction of non-collagen protein with 8M urea, the extent of glycosylation in glomerular basement membrane collagen was determined with a specific colorimetric reaction that detects carbohydrate in ketoamine linkage with proteins. The level of glycosylation of glomerular basement membrane collagen purified from diabetic rats was significantly greater than that in non-diabetic animals. Increased basement membrane glycosylation may alter structure-function relationships of the capillary filtration barrier.  相似文献   

16.
Following reduction with NaB3H4, connectin, an elastic protein prepared from chicken muscle, was found to contain the reducible cross-links derived from lysine and hydroxylysine aldehydes. The aldimine form of lysinonorleucine is the most abundant reducible cross-link in this elastic protein. A smaller proportion of the reduced cross-link, histidino-hydroxymerodesmosine, is also detected. Since collagen contamination in the connectin preparation was if any negligible, it is concluded that connectin and connective tissue proteins, collagen and elastin, share common features of coss-linking.  相似文献   

17.
During incubation with physiological buffers at 37°, as well as during in vivo maturation, native collagen fibers display a progressive increase in tensile strength and insolubility. This is paralleled by a progressive loss of reducible, intermolecular crosslinks. The experiments described in this paper indicate that nucleophilic addition of lysine and/or hydroxylysine residues to the electrophilic double bond of the reducible crosslinks transforms them into more stable, non-reducible crosslinks. Indeed, modification of lysine/hydroxylysine residues completely blocks this transformation, while modification of his, arg, glu and asp is without effect. On the basis of these and other experiments, tentative structures are proposed for the stable crosslinks.  相似文献   

18.
Collagen with a molecular composition [α1(I)]3 has been identified in acetic acid extracts from lathyritic chick embryo tendons and calvaria. These molecules characteristically have greater solubility than Type I collagen at neutral pH and contain increased amounts of hydroxylysine residues. It is suggested that these molecules represent a separate gene product of embryonic cells which may be important in the process of maturation and development.  相似文献   

19.
This paper describes the isolation from reduced collagen of two new amino acids believed to be involved, in their non-reduced form, as intermolecular cross-links stabilizing the collagen fibre. The reduction of intact collagen fibrils with tritiated sodium borohydride was found to stabilize the aldehyde-mediated cross-links to acid hydrolysis and thus allowed their location and isolation from acid hydrolysates on an automatic amino acid analyser. Comparison of the radioactive elution patterns from the autoanalyser of collagen treated in various ways before reduction permitted a preliminary classification of the peaks into cross-link precursors, intramolecular and intermolecular cross-links. The techniques employed to isolate the purified components on a large scale and to identify them structurally are described in detail. Two labile intermolecular cross-links were isolated in their reduced forms, one of which was identified by high-resolution mass spectrometry as N-(5-amino-5-carboxypentyl)hydroxylysine. The structure of this compound was confirmed by chemical synthesis. The cross-link precursor α-aminoadipic δ-semialdehyde was isolated in its reduced form, -hydroxynorleucine, together with its acid degradation product -chloronorleucine. A relatively stable intermolecular cross-link was isolated and partially characterized by mass spectrometry as an aldol resulting from the reaction of the δ-semialdehyde derived from lysine and hydroxylysine.  相似文献   

20.
The regulation of the glycosylations of hydroxylysine was studied in isolated chick-embryo cells by labelling with a [14C]lysine pulse. The course of the procollagen lysyl modifications was compared in tendon and cartilage cells, and the effect on the glycosylations of the degree of lysyl hydroxylation and the concentration of Mn2+ and Fe2+ were also studied, in tendon cells. Procollagen triple helix formation was inhibited in most experiments in order to eliminate the effect of this process on the continuation of the reactions.Both in the tendon and cartilage cells the intracellular lysyl modifications proceeded in a biphasic fashion. After an initial sharp linear increase, the reactions did not cease but were protracted at a slower but constant rate. Lysyl hydroxylation was followed by rapid galactosylation in both cell types and this was followed almost immediately by rapid glucosylation, suggesting a close association of the corresponding enzymes. The data further suggest that other factors must also exist, in addition to the differences in the timing of triple helix formation and the actual hydroxylysine content, which are responsible for the different amounts of galactose in the collagens synthesized by these cell types. The amount of glycosylgalactosylhydroxylysine nevertheless seemed to be determined by the available acceptor sites, i.e., the amount of galactosylhydroxylysine.In further experiments wiht tendon cells the oxygen participating in lysyl hydroxylation was displaced by nitrogen at various points in time. When the degree of lysyl hydroxylation was reduced to less than one-third of the original, the total amounts of glycosylated residues decreased correspondingly, but their proportion relative to total hydroxylysine remained unchanged.Extra Mn2+ increased the proportion of galactosylated hydroxylysine, suggesting that the activity of hydroxylysyl galactosyltransferase is not saturating in respect of the catalyzed reaction. Experiments on the addition of Fe2+ or its chelation by α, α′-dipyridyl gave indications that the presence of this co-factor is not required for either glycosylation reaction in isolated tendon cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号