首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Infection of human epidermal keratinocytes by the oncogenic virus SV40 leads to progressive inhibition of the normal differentiation process in vitro. Treatment of infected cells with 5-azacytidine (5-aza-CR) over a 24-h period produced a striking enlargement and pronounced flattening of cells within 5-7 days following removal of the agent. This morphological change was accompanied by a several-fold increase in the number of cells staining positively for the cell envelope precursor protein, involucrin, and in the exfoliation of cornified envelope bearing cells from the monolayer. The drug-treated cultures at high passage levels were stained by immunofluorescence using monoclonal antibodies to keratin classes associated with different epidermal layers. These experiments revealed that 5-aza-CR caused the re-expression of two keratin classes (suprabasal and stratum corneum-associated), whose synthesis had been suppressed during the transformation process. 5-Aza-CR also brought about re-expression of 58 and 56 kD keratin markers of epithelial keratinization and stratification, as well as of 40 and 49-52 kD keratin markers of viral transformation. However, the responsiveness to the drug was gradually lost over time following infection.  相似文献   

3.
The differentiation status of the cervical epithelial cell has an important influence on responsiveness to estrogens and progestins. Several agents, including glucocorticoids and retinoids, are known to influence cervical cell differentiation. However, the effects of vitamin D have not been examined. Vitamin D is known to regulate cell proliferation and gene expression in a variety of epithelial cells. In the present study we investigated the ability of 1alpha25-dihydroxyvitamin D3 (D3) to regulate cell proliferation and expression of insulin-like growth factor-binding protein-3 (IGFBP-3) in human ectocervical epithelial cells. ECE16-1, a non-tumorigenic cervical cell line, was growth inhibited by D3 with maximal inhibition at 1000 nM. IGFBP-3 levels increased in parallel with the growth inhibition. IGFBP-3 levels were half-maximally increased at approximately 10-100 nM and maximally increased (10- to 30-fold) at 1000 nM D3. These studies show that vitamin D regulates cervical epithelial cell gene regulation and cell proliferation and that IGFBP-3 may be an in vivo marker of vitamin D action in the cervix.  相似文献   

4.
5.
Involucrin is a 68-kDa precursor of the keratinocyte cornified envelope. During keratinocyte terminal differentiation glutamine residues of involucrin become covalently cross-linked to other envelope precursors via covalent epsilon-(gamma-glutamyl)lysine bonds. In the present study we examine the secondary and tertiary structure of human involucrin using computer algorithms, circular dichroism, and electron microscopy. Our results indicate that involucrin is an extended, flexible, rod-shaped molecule that has a length of 460 A, an axial ratio of 30:1 and possesses between 50 and 75% alpha-helical content. Glutamine residues are circumferentially distributed along the length of the alpha-helical segments of the molecule, a distribution that is conserved in all species. We hypothesize that this distribution of glutamine residues together with the elongated shape of the molecule permits optimal interaction of involucrin glutamyl side chains with the lysine residues of other para-membranous proteins during transglutaminase-mediated cross-linking. Moreover, its long length allows involucrin to cross-link molecules that are separated by substantial distances in the cornified envelope. These properties allow a single involucrin molecule to form multiple cross-links, in multiple spatial planes, with other envelope precursors. Thus, the structure of involucrin is that of an ideal intermolecular cross-bridge.  相似文献   

6.
The cell envelope (CE) is a specialized structure that is important for barrier function in terminally differentiated stratified squamous epithelia. The CE is formed inside the plasma membrane and becomes insoluble as a result of cross-linking of constituent proteins by isopeptide bonds formed by transglutaminases. To investigate the earliest stages of assembly of the CE, we have studied human epidermal keratinocytes induced to terminally differentiate in submerged liquid culture as a model system for epithelia in general. CEs were harvested from 2-, 3-, 5-, or 7-d cultured cells and examined by 1) immunogold electron microscopy using antibodies to known CE or other junctional proteins and 2) amino acid sequencing of cross-linked peptides derived by proteolysis of CEs. Our data document that CE assembly is initiated along the plasma membrane between desmosomes by head-to-tail and head-to-head cross-linking of involucrin to itself and to envoplakin and perhaps periplakin. Essentially only one lysine and two glutamine residues of involucrin and two glutamines of envoplakin were used initially. In CEs of 3-d cultured cells, involucrin, envoplakin, and small proline-rich proteins were physically located at desmosomes and had become cross-linked to desmoplakin, and in 5-d CEs, these three proteins had formed a continuous layer extending uniformly along the cell periphery. By this time >15 residues of involucrin were used for cross-linking. The CEs of 7-d cells contain significant amounts of the protein loricrin, typically expressed at a later stage of CE assembly. Together, these data stress the importance of juxtaposition of membranes, transglutaminases, and involucrin and envoplakin in the initiation of CE assembly of stratified squamous epithelia.  相似文献   

7.
Meyer K  Beyene A  Bowlin TL  Basu A  Ray R 《Journal of virology》2004,78(23):12838-12847
We have previously reported that a pseudotype virus generated by reconstitution of hepatitis C virus (HCV) chimeric envelope glycoprotein E1-G or E2-G on the surface of a temperature-sensitive mutant of vesicular stomatitis virus (VSVts045) interacts independently with mammalian cells to initiate infection. Here, we examined whether coexpression of both of the envelope glycoproteins on pseudotype particles would augment virus infectivity and/or alter the functional properties of the individual subunits. Stable transfectants of baby hamster kidney (BHK) epithelial cells expressing either one or both of the chimeric envelope glycoproteins of HCV on the cell surface were generated. The infectious titer of the VSV pseudotype, derived from a stable cell line incorporating both of the chimeric glycoproteins of HCV, was approximately 4- to 5-fold higher than that of a pseudotype bearing E1-G alone or approximately 25- to 30-fold higher than that of E2-G alone when assayed with a number of mammalian cell lines. Further studies suggested that that the E1-G/E2-G or E2-G pseudotype was more sensitive to the inhibitory effect of heparin than the E1-G pseudotype. Treatment of the E1-G/E2-G pseudotype with a negatively charged sulfated sialyl lipid (NMSO3) displayed a approximately 4-fold-higher sensitivity to neutralization than pseudotypes with either of the two individual glycoproteins. In contrast, VSVts045, used as a backbone for the generation of pseudotypes, displayed at least 20-fold-higher sensitivity to NMSO3-mediated inhibition of virus plaque formation. The effect of low-density lipoprotein on the E1-G pseudotype was greater than that apparent for the E1-G/E2-G pseudotype. The treatment of cells with monoclonal antibodies to CD81 displayed an inhibitory effect upon the pseudotype with E1-G/E2-G or with E2-G alone. Taken together, our results indicate that the HCV E1 and E2 glycoproteins have separable functional properties and that the presence of these two envelope glycoproteins on VSV/HCV pseudotype particles increases infectious titer.  相似文献   

8.
When serially cultivated human epidermal keratinocytes are placed in suspension culture they stop growing and form, beneath the plasma membrane, an insoluble envelope consisting of protein cross-linked by ε- (γ-glutamyl)lysine. The formation of envelopes in suspended cells is preceded by a sharp decline in the rate of protein synthesis, and most envelopes appear only after the average rate of protein synthesis has fallen to a very low level. If protein synthesis is reduced over 98 percent with cycloheximide or emetine at the time that surface-grown cells are placed in suspension culture, cross-linked envelopes form in most of the cells. This shows that the precursor of the envelope and the cross-linking enzyme are already in the cytoplasm in most cells of growing surface cultures. The process of envelope formation by suspension cultures is actually accelerated by the inhibitors of protein synthesis; an increased number of cells with cross-linked envelopes is observable within 4-6 h after the addition of cycloheximide. The inhibitor also induces a large fraction of the cells of surface cultures to form enveloped within a few days. These findings suggest that arrest of protein synthesis leads to activation of the cross-linking process. Agents known to inhibit transglutaminase-mediated protein cross-linking-putrescine, iodoacetamide, and ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA)- also prevent envelope formation. Though the activity of the cross-linking transglutaminase depends on the presence of cellular Ca++, we have not been able to activate the cross-linking process by high external Ca++ concentration or ionophores.  相似文献   

9.
The murine leukemia virus envelope protein is synthesized as a precursor molecule, Pr85env, which is proteolytically cleaved at an arginine residue to produce two mature envelope proteins, gp70 and p15(E). The results presented here indicate that mutation to lysine of the arginine found at the envelope precursor cleavage site results in a precursor which is cleaved with an efficiency at least 10-fold lower than the efficiency with which the wild-type protein is cleaved. This mutation has been used to investigate the requirement for envelope protein processing in various aspects of retroviral infection. Viruses produced by cells transfected with mutant proviral clones are approximately 10-fold less infectious than wild-type viruses. Mutant viruses are incapable of inducing XC cell syncytium formation and are 100-fold less efficient than wild-type viruses at rendering cells resistant to superinfection. Envelope glycoproteins bearing the lysine mutation are found in reduced amounts on the surface of infected cells, and as a result mutant virions contain significantly less envelope protein than do wild-type virions. The phenotypic effects of the processing mutation described here are most likely the result of this paucity of envelope glycoproteins in virions carrying the mutation.  相似文献   

10.
When confluent cultures of the transformed human keratinocyte line SV-K14 are shifted to serum-free medium the cells achieve, within 4 days, the ability to synthesize a cornified envelope after challenge with the Ca2+ ionophore A23187. During these 4 days the enzyme transglutaminase (EC 2.3.2.13), which catalyses the cross-linking of different envelope precursor proteins, is partially transferred from the cytosolic pool into the plasma membrane. The association of the enzyme with the plasma membrane proves to be an essential step in the envelope formation since a direct correlation between plasma membrane-bound transglutaminase and envelope competence is observed. Retinoids block the insertion of the enzyme and therefore prevent envelope formation.  相似文献   

11.
When keratinocytes derived from different squamous epithelia are cultured in the absence of vitamin A, they form cross-linked envelopes during the last stage of terminal differentiation. Addition of the vitamin inhibits envelope formation, but the degree of inhibition is not the same for different keratinocyte subtypes. In the presence of low concentrations of retinyl acetate, conjunctival keratinocytes form virtually no cross-linked envelopes; esophageal and vaginal keratinocytes are less sensitive to the vitamin, and epidermal keratinocytes are the least sensitive. The suppression of cross-linked envelope formation is not associated with a proportional decrease in the concentration of involucrin, a precursor of the envelope, but occurs at the level of cross-linking itself, a process dependent on an increase in the intracellular concentration of calcium ions. Keratinocytes in which spontaneous envelope cross-linking has been prevented by retinyl acetate promptly form cross-linked envelopes if Ca2+ is introduced into the cytoplasm.  相似文献   

12.
Human foreskin keratinocytes in culture produce 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) and 24,25-dihydroxycholecalciferol (24,25-(OH)2D3) from 25-hydroxycholecalciferol (25-(OH)D3). The production of 1,25-(OH)2D3 by these cells correlated with the early events of differentiation such as expression of transglutaminase activity and the levels of a precursor protein for the cornified envelopes, involucrin. In contrast, the increased production of 24,25-(OH)2D3, as 1,25-(OH)2D3 production declined, correlated with the terminal differentiation marker, cornified envelope formation. Exogenous 1,25-(OH)2D3 (10(-11)-10(-9) M) inhibited the 1-alpha-hydroxylase at all stages of growth of these cells. Keratinocytes in culture expressed receptors for 1,25-(OH)2D3 which had similar sedimentation behavior in sucrose density gradients as chick intestinal cytosol receptors. Cells in early stages of growth (preconfluent and confluent) contained higher numbers of receptors (26-27 fmol/mg protein) than post-confluent cells. The dissociation constant (237-278 pM) of these receptors for 1,25-(OH)2D3 was not consistently altered by differentiation. Since 1,25-(OH)2D3 is a potent stimulator of cell differentiation in a variety of systems including the epidermis, our results suggest the possibility that endogenous 1,25-(OH)2D3 production may participate in the differentiation of keratinocytes in culture and, perhaps, in vivo.  相似文献   

13.
Nuclear envelope assembly is an essential event in each cell cycle but the proteins and lipids involved in its regulation remain mostly unknown. Assembly involves membrane fusions but neither specific SNAREs nor Rab GTPases have been identified in its control. We report that a precursor membrane population (MV1) required for NE assembly has a unique lipid composition consisting prominently of poly-phosphatidylinositides. The lipid composition was determined by adapting HPLC electrospray ionisation tandem mass spectrometry to phosphoinositide analysis, revealing the capacity of this technique to document dynamic lipid transitions of functional importance in natural membrane populations. MV1 is >100-fold enriched in endogenous PLCgamma and >25-fold enriched in the PLC substrate phosphatidylinositol bisphosphate (PtdInsP2) compared to the second membrane population, derived largely from endoplasmic reticulum (ER), that contributes most of the NE. During NE formation PLCgamma becomes transiently phosphorylated at the tyrosine 783 site indicative of its activation. In addition specific inhibition of PLCgamma blocks nuclear envelope formation. In vivo, PLCgamma is concentrated on vesicles of similar size to purified MV1. These associate with nuclei during the period of NE formation and are distinct from ER membranes. The unprecedented concentration of PLCgamma and its substrate PtdInsP2 in a subset of membranes that binds to only two regions of the nucleus, and activation of PLCgamma by GTP during initial stages of NE formation provide a mechanism for temporal control of NE assembly and offer an explanation for how such a process of membrane fusion can be spatially regulated.  相似文献   

14.
Summary Human buccal epithelial cells have been reared from explants maintained in supplemented MCDB 153 medium. Primary epithelial outgrowths show typical structural features and uniformly express keratins; subunit analyses demonstrate expression of keratins 5, 6, 14, 16/17, and 19. The cells exhibit up to 6% colony forming efficiency and divide at about 0.8 population doublings per day on fibronectin/collagen-coated dishes at clonal density. Studies of markers of proliferation and differentiation in buccal epithelial cells indicate that epidermal growth factor, cholera toxin, retinoic acid, and pituitary extract each exhibit a distinctive ability to enhance growth and variably affect cell migration and cell surface area. Transforming growth factorβ-1 inhibits growth and increases surface area without affecting migration, involucrin expression, and cross-linked envelope formation. Moreover, exposure of cells to fetal bovine serum, the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate or an elevated Ca2+ concentration (from 0.1 to 1 mM) inhibits growth and induces squamous differentiation as indicated by inhibition of migration, increases in surface area, involucrin expression, or formation of cross-linked envelopes. The results show that epithelial cells can be reproducibly derived from explant cultures of human buccal mucosa specimens and the cells transferred under serum-free conditions. Buccal epithelial cells in culture undergo a pattern of growth and differentiation that mimics parakeratinization in vivo and variably respond to several agents shown to modulate growth of cells that originate from other types of epithelia. This work was supported in part by grants from the Swedish National Board of Laboratory Animals, the Swedish Medical Research Council, the Swedish Natural Science Research Council, the Swedish Fund for Scientific Research Without Animal Experiments, the Swedish Cancer Society, the Swedish Tobacco Company, and Lions Club International, Djurg?rden, Stockholm, Sweden.  相似文献   

15.
The envelope glycoprotein of the human immunodeficiency virus type 2 (HIV-2) is synthesized as a polyprotein precursor which is proteolytically processed to produce the mature surface and transmembrane envelope glycoproteins. The processed envelope glycoprotein species are responsible for the fusion between the viral envelope and the host cell membrane during the infection process. The envelope glycoprotein also induces syncytium formation between envelope-expressing cells and receptor-bearing cells. To characterize domains of the HIV-2 envelope glycoprotein involved in membrane fusion and in proteolytic processing, we introduced single amino acid mutations into the region of the HIV-2 surface glycoprotein corresponding to the principal neutralizing determinant (the V3 loop) of HIV-1, the putative HIV-2 envelope precursor-processing sequence, and the hydrophobic amino terminus of the HIV-2 transmembrane envelope glycoprotein. The effects of these mutations on syncytium formation, virus infectivity, envelope expression, envelope processing, and CD4 binding were analyzed. Our results suggest that the V3-like region of the HIV-2 surface glycoprotein and the hydrophobic amino terminus of the transmembrane glycoprotein are HIV-2 fusion domains and characterize the effects of mutations in the HIV-2 envelope glycoprotein precursor-processing sequence.  相似文献   

16.
M Simon  H Green 《Cell》1984,36(4):827-834
Cultured keratinocytes, like those in natural squamous epithelia, form submembranous protein envelopes cross-linked by cellular transglutaminase. During the cross-linking, the cytosolic protein involucrin becomes incorporated into the envelope and can no longer be extracted by detergents. We show here that when transglutaminase is activated in cultured keratinocytes, at least six other proteins also become nonextractable. In contrast to involucrin, these proteins are associated with membranes. Two of the proteins (210 and 195 kd) are differentiated products specific to the keratinocyte; like involucrin, they are absent from small keratinocytes and fibroblasts, but appear in larger keratinocytes during the course of their terminal differentiation. The other proteins that become nonextractable cannot be destined exclusively for envelope formation since they are also present in fibroblasts. Transglutaminase is used by the mature (large) keratinocyte to make a detergent-resistant envelope from what appears to be a mixture of differentiation-specific and nonspecific proteins, both membrane-bound and cytosolic.  相似文献   

17.
The influences of the synthetic progestin, medroxyprogesterone acetate (MPA), the progesterone receptor modulator J867, and the antagonist ZK137316 were studied in vitro on isolated endometrial epithelial cells, as well as endometrial fibroblasts. We evaluated the expression of estrogen receptor alpha (ER) and the progesterone receptor (PR) by RT-PCR. ER and PR were strongly expressed in the fibroblasts and epithelial cells under treatment with 10(-8) M 17beta-estradiol (E(2)). Treatment with 10(-6) M J867 or ZK137316 upregulated the PR expression as did E(2), in contrast to treatment with 10(-6) M MPA, which caused a downregulation of PR in epithelial cells, but not in fibroblasts. In addition, the vascular endothelial growth factor (VEGF) release into the cell culture medium was analyzed by a VEGF-ELISA. VEGF which plays an important role in angiogenesis, is regulated by steroid hormones as well as hypoxia. E(2) stimulates VEGF release into the medium in both cell types. MPA reduces VEGF release significantly in the fibroblast cell culture, but increases it in the epithelial cell culture. ZK137316, in the presence or absence of E(2), reduces VEGF release in fibroblast cell culture. J867 increases the VEGF production in fibroblasts only in the presence of E(2). Both compounds show no significant effects, compared to E(2), in epithelial cell culture. The different results for the epithelial cells and fibroblasts indicate that the pharmacological effects of PR modulators (PRMs) and progesterone antagonists (PAs) may be cell specific and depend on the presence or absence of partial progestagenic agonistic activities. This observation opens up new perspectives for various clinical applications.  相似文献   

18.
The purpose of this study was to determine the expression and cellular functions of the epithelial NADPH oxidase DUOX1 during alveolar type II cell development. When human fetal lung cells (gestational age 11-22 wk) were cultured to confluency on permeable filters, exposure of cells to a hormone mixture (dexamethasone, 8-Br-cAMP, and IBMX, together referred to as DCI) resulted in differentiation of cells into a mature type II phenotype as assessed by expression of lamellar bodies, surfactant proteins, and transepithelial electrical parameters. After 6 days in culture in presence of DCI, transepithelial resistance (2,616 +/- 529 Omega.cm(2)) and potential (-8.5 +/- 0.6 mV) indicated epithelial polarization. At the same time, treatment with DCI significantly increased the mRNA expression of DUOX1 ( approximately 21-fold), its maturation factor DUOXA1 ( approximately 12-fold), as well as DUOX protein ( approximately 12-fold), which was localized near the apical cell pole in confluent cultures. For comparison, in fetal lung specimens, DUOX protein was not detectable at up to 27 wk of gestational age but was strongly upregulated after 32 wk. Function of DUOX1 was assessed by measuring H(2)O(2) and acid production. Rates of H(2)O(2) production were increased by DCI treatment and blocked by small interfering RNA directed against DUOX1 or by diphenylene iodonium. DCI-treated cultures also showed increased intracellular acid production and acid release into the mucosal medium, and acid production was largely blocked by knockdown of DUOX1 mRNA. These data establish the regulated expression of DUOX1 during alveolar maturation, and indicate DUOX1 in alveolar H(2)O(2) and acid secretion by differentiated type II cells.  相似文献   

19.
The effects of fibroblast growth factor (FGF) on testicular aromatase activity has been studied using primary cultures of porcine Leydig cells. After culture for 3 days in the absence or presence of FGF, the ability of the cells to produce estrogen was examined in a 4h-test period in which either (a) hCG (10(-9) M) or (b) androstenedione (3 x 10(-6) M) was added to the medium. FGF produced a 3- to 20-fold increase in estrogen formation from endogenous or exogenous substrate during the test period, in spite of a marked decrease (approximately equal to 60%) in [125I]-hCG binding and no significant change in testosterone concentration. Stimulation of estrogen secretion by FGF was dose-(ED50 approximately equal to 2 ng/ml) and time-dependent, the first and maximal effects were observed after 12h and 48h, respectively. Preliminary tests with several other factors (insulin, EGF, TGF-beta, FSH and hCG) showed that hCG alone directly stimulated aromatase activity. From these findings a role is suggested for FGF as a paracrine/autocrine agent in the control of estrogen secretion by Leydig cells.  相似文献   

20.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号