首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The O-specific polysaccharide of the lipopolysaccharide of Citrobacter gillenii PCM 1540 (serogroup O11) consists of D-Glc, D-Man, D-GalNAc, D-GlcNAc, 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) and O-acetyl groups in the ratios 2:1:1:1:1:1. On the basis of sugar and methylation analyses and Smith-degradation along with 1D and 2D 1H and 13C NMR spectroscopy, the following structure of the branched hexasaccharide repeating unit was established: [structure: see text]. Citrobacter werkmanii PCM 1541 belonging to the same serogroup O11 was found to have an R-form lipopolysaccharide devoid of the O-specific polysaccharide.  相似文献   

2.
The O-specific polysaccharide of Citrobacter braakii PCM 1531 (serogroup O6) was isolated by mild acid hydrolysis of the lipopolysaccharide (LPS) and found to contain d-fucose, l-rhamnose, 4-deoxy-d-arabino-hexose and O-acetyl groups in molar ratios 2 : 1 : 1 : 1. On the basis of methylation analysis and 1H and 13C NMR spectroscopy data, the structure of the branched tetrasaccharide repeating unit of the O-specific polysaccharide was established. Using various serological assays, it was demonstrated that the LPS of strain PCM 1531 is not related serologically to other known 4-deoxy-d-arabino-hexose-containing LPS from Citrobacter PCM 1487 (serogroup O5) or C. youngae PCM 1488 (serogroup O36). Two other strains of Citrobacter, PCM 1504 and PCM 1505, which, together with strain PCM 1531, have been classified in serogroup O6, were shown to be serologically distinct from strain PCM 1531 and should be reclassified into another serogroup.  相似文献   

3.
Serological studies using SDS-PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti-Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti-Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography. Sugar and methylation analyses along with (1)H- and (13)C-NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY and (1)H,(13)C HSQC experiments, showed that the repeating unit of the OPS has the following structure: [structure: see text]. NMR spectroscopic studies demonstrated that Citrobacter werkmanii O20 and C. youngae O25 have the same OPS structure as C. youngae O2. Sugar and methylation analyses of the core oligosaccharide fractions demonstrated structural differences in the lipopolysaccharide core regions of these strains, which may substantiate their classification in different serogroups.  相似文献   

4.
A neutral O-specific polysaccharide was isolated from the lipopolysaccharide of Citrobacter gillenii strain PCM 1544, representing serotype O12a,12b. The polysaccharide was studied by sugar and methylation analyses and Smith degradation along with 1H and 13C NMR spectroscopy, including a ROESY experiment. The following structure of the tetrasaccharide repeating unit was established, in which substitution with terminal GlcNAc is approximately 60%. [structure: see text]  相似文献   

5.
Serological tests revealed immunochemical similarities between the lipopolysaccharides of Hafnia alvei strains PCM 1200, 1203 and 1205. Immunoblotting and ELISA showed cross-reactions between the strains. NMR spectroscopy showed that the O-deacetylated O-specific polysaccharides isolated from lipopolysaccharides of H. alvei strains PCM 1200 and 1203 possessed the same composition and sequence as the O-deacetylated O-specific polysaccharide of H. alvei strain PCM 1205, that is a glycerol teichoic-acid-like polymer with a repeating unit of the following structure: [carbohydrate structure: see text] NMR spectroscopic studies of the polysaccharides concluded that O-3 of the side chain beta-D-GlcpNAc is partially O-acetylated (50-80%) in both investigated strains. In strain PCM 1203 an additional O-acetyl group (50-80%) is linked to O-6 of the chain -->3)-alpha-D-GlcpNAc-(1--> residue. The structural features of the isolated O-specific polysaccharides were also the same as those of the O-specific polysaccharides on the bacterial cells directly observed by the HR-MAS NMR technique.  相似文献   

6.
Lipopolysaccharide was extracted from cells of Citrobacter freundii PCM 1443 from serogroup O39 and degraded by mild acid hydrolysis to give an O-polysaccharide. Based on enzymatic and methylation analyses, along with 1H and 13C nuclear magnetic resonance spectroscopy, it was found that the lipopolysaccharide studied has two different linear polysaccharide chains of d-galactan type containing 3-substituted galactose residues. One of the galactans has the disaccharide repeating units of alpha-D-galactopyranose and beta-D-galactofuranose and the other is comprised of alpha-D-galactopyranose and beta-D-galactopyranose, the latter being substituted in 25% repeats with PEtN at O-6. An immunoblotting assay demonstrated that the lipopolysaccharide of C. freundii PCM 1443 is serologically related to that of Klebsiella pneumoniae O1, which contains the same galactan chains but is devoid of phosphoethanolamine.  相似文献   

7.
The O-specific polysaccharide of Citrobacter gillenii PCM 1542 from serotype O-12a,12 b is composed of one residue each of D-glucose, D-GlcNAc, 2-deoxy-2-[(R)-3-hydroxybutyramido]-D-glucose (D-GlcNAcyl) and two GalNAc residues. On the basis of sugar and methylation analyses of the intact and Smith degraded polysaccharides, along with 1D and 2D 1H and 13C NMR spectroscopy, the following structure of the branched pentasaccharide repeating unit of the O-specific polysaccharide was established:This structure differs significantly from that of the O-specific polysaccharide of C. gillenii PCM 1544 from the same serotype O-12a,12 b, which has been established earlier (Kübler-Kielz.shtsls;b, J. et al. Carbohydr. Res. 2001, 331, 331-336). Serological studies confirmed that the two O-antigens are not related and suggested that strains PCM 1542 and 1544 should be classified into different O-serogroups.  相似文献   

8.
The lipopolysaccharide of Citrobacter youngae O1, strain PCM 1492 was degraded with acid or alkali under mild conditions, and the resultant polysaccharide was isolated by GPC and studied by sugar and methylation analyses and 1H and 13C NMR spectroscopies, including 2D COSY, TOCSY, NOESY and 1H, 13C HSQC experiments. The following structure of the branched tetrasaccharide repeating unit of the O-polysaccharide was established: [structure: see text] where substitution with the alpha-D-Ribf group is nonstoichiometric. This group occurs rarely in bacterial polysaccharides and is easily cleaved under mild acidic conditions. Studies with polyclonal rabbit antisera against whole cells of C. youngae PCM 1492 and PCM 1506 showed the serological identity of the lipopolysaccharides of C. youngae PCM 1492, PCM 1493 and PCM 1506, which are classified in serogroup O1.  相似文献   

9.
Structural studies have been carried out on the O-specific polysaccharide from the lipopolysaccharide of the reference strain (CDC 1604-55) for serogroup O8 of Serratia marcescens. The polymer has a branched, tetrasaccharide repeating unit of D-galactose(Gal),D-glucose(Glc), and 2-acetamido-2-deoxy-D-glucose(GlcNAc) with the following structure: (Formula: see text). The anomeric configuration assigned to the glucose residue differs from that (beta) previously proposed [Tarcsay, L., Wang, C. S., Li, S.-C. and Alaupovic, P. (1973) Biochemistry 12, 1948-1955]. The structure of the O8 polymer is identical with that of one of two polymers present in the cell envelope of a strain (CDC 1783-57) of S. marcescens O14.  相似文献   

10.
O-specific polysaccharides (O-antigens) of the lipopolysaccharides (LPS) of Proteus penneri strains 1 and 4 were studied using sugar analysis, (1)H and (13)C NMR spectroscopy, including 2D COSY, H-detected (1)H,(13)C HMQC, and rotating-frame NOE spectroscopy (ROESY). The following structures of the tetrasaccharide (strain 1) and pentasaccharide (strain 4) repeating units of the polysaccharides were established: [reaction: see text]. In the polysaccharide of P. penneri strain 4, glycosylation with the lateral Glc residue (75%) and O-acetylation of the lateral GalNAc residue (55%) are nonstoichiometric. This polysaccharide contains also other, minor O-acetyl groups, whose positions were not determined. The structural similarity of the O-specific polysaccharides was consistent with the close serological relatedness of the LPS, which was demonstrated by immunochemical studies with O-antisera against P. penneri 1 and 4. Based on these data, it was proposed to classify P. penneri strains 1 and 4 into a new Proteus serogroup, O72, as two subgroups, O72a and O72a,b, respectively. Serological cross-reactivity of P. penneri 1 O-antiserum with the LPS of P. penneri 40 and 41 was substantiated by the presence of an epitope(s) on the LPS core region shared by all P. penneri strains studied.  相似文献   

11.
Calf thyroid slices incubated with [U-14C]glucose synthesized protein-bound Glc3Man9GlcNAc2, Glc2-Man9GlcNAc2, Glc1Man9GlcNAc2, Glc1Man8GlcNAc2, and Glc1Man7GlcNAc2. Although label in the glucose residues of the last three compounds could be detected within 5 min of incubation, appearance of radioactivity in the mannose residues of the alpha-mannosidase-resistant cores of Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 took more than 30 and 60 min, respectively, to appear after label was detected in the same mannose residues of Glc1Man9GlcNAc2. The glucose residues were removed upon chasing the slices with unlabeled glucose. The last compound to disappear was Glc1Man9GlcNAc2. Calf thyroid microsomes incubated with UDP-[U-14C]Glc synthesized the five protein-bound oligosaccharides mentioned above. Although addition to GDP-Man to the incubation mixtures greatly diminished the formation of Glc3Man9GlcNAc2 bound either to dolichol-P-P or to protein, labeling of Glc1Man9GlcNAc2, Glc1Man8GlcNAc2, and Glc1Man7GlcNAc2 was not affected. Addition of kojibiose prevented deglucosylation of protein-bound Glc3Man9GlcNAc2 without affecting the formation of Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 and only partially diminishing that of Glc1Man9GlcNAc2. These results indicate that Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed by glucosylation of the unglucosylated species and not be demannosylation of Glc1Man9GlcNAc2 and that probably part of the latter compound was formed in the same way.  相似文献   

12.
The following structure of the O-specific polysaccharide of Citrobacter braakii O7a,3b,1c was established using sugar and methylation analyses and NMR spectroscopy, including 2D COSY, TOCSY, NOESY, and 1H, 13C heteronuclear single-quantum coherence (HSQC) experiments: (struture: see text). The main D-mannan chain of the polysaccharide studied has the same structure as the O-specific polysaccharide of Escherichia coli O9, Klebsiella pneumoniae O3, and Hafnia alvei PCM 1223.  相似文献   

13.
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum.  相似文献   

14.
Using sugar and methylation analyses, and one- and two-dimensional 1H-NMR spectroscopy at 500 MHz it was established that poly-beta-1,2-4-deoxy-D-arabinohexopyranose occurs as O-specific chains of lipopolysaccharides in Citrobacter serotypes O4, O27 and O36. Strong serological cross-reactivity between these serotypes is in full agreement with the chemical identity of their O-specific polysaccharides.  相似文献   

15.
On the basis of chemical and methylation analyses, one- and two-dimensional (1)H- and (13)C-NMR spectroscopy, including COSY, TOCSY, NOESY and (1)H, (13)C HSQC experiments, a neutral O-specific polysaccharide isolated from Hafnia alvei strain PCM 1223 lipopolysaccharide (LPS) was found to be an alpha-mannan composed of pentasaccharide repeating units having the following structure:-->3)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->. Immunoblotting showed a strong cross-reactivity between anti-H. alvei PCM 1223 serum and LPSs of Escherichia coli O9 and Klebsiella pneumoniae O3. The serological relationship of the LPSs of these bacteria is due to the structural identity of their O-specific polysaccharides, though the LPSs differ in their core regions.  相似文献   

16.
As reported previously (Parodi, A.J., and Cazzulo, J.J. (1982) J. Biol. Chem. 257, 7641-7645), label was incorporated first to the glucose residues of protein-bound Glc1Man9GlcNAc2, Glc1Man8GlcNAc2, and Glc1Man7GlcNAc2 when Trypanosoma cruzi cells, the causative agent of Chagas disease, were incubated with [U-14C]glucose. It is now reported that the glucose residues are removed from the oligosaccharides after a chase period. The relative proportion of Man9GlcNAc2, Man8GlcNAc2, Man7GlcNAc2, and Man6GlcNAc2 appeared to be the same after 120 and 180 min of chase, thus indicating that these compounds were the fully processed protein-bound oligosaccharides. No complex type protein-bound oligosaccharides were detected. Evidence is presented indicating that Glc1Man7GlcNAc2 was formed mainly by glucosylation of Man7GlcNAc2 and not by demannosylation of Glc1Man9GlcNAc2. Man9GlcNAc2 was the first oligosaccharide to be labeled when cells were incubated with [2-3H]mannose. Based on these and previous results, the overall mechanism of protein N-glycosylation appeared to be: (formula; see text) The structure of the oligosaccharides appeared to be similar to some of those present in human glycoproteins. T. cruzi cells isolated from distant locations in South America were found to share a common mechanism of protein glycosylation.  相似文献   

17.
We have previously reported that the oligosaccharides transferred in vivo from dolichol-P-P derivatives in protein N-glycosylation in trypanosomatids are devoid of glucose residues and contain 2 N-acetylglucosamine and 6, 7, or 9 mannose units depending on the species. In this respect trypanosomatids differ from wild type mammalian, plant, insect, and fungal cells in which Glc3Man9GlcNAc2 is transferred. We are now reporting that incubation of Glc1-3Man9GlcNAc2-P-P-dolichol and Man7-9GlcNAc2-P-P-dolichol with membranes of Trypanosoma cruzi, Leptomonas samueli, Crithidia fasciculata, and Blastocrithidia culicis and an acceptor hexapeptide leads to the transfer of the six above mentioned lipid-linked oligosaccharides at the same rate. Control experiments performed under similar conditions but with rat liver and Saccharomyces cerevisiae membranes showed that, as already known, Glc3Man9GlcNAc2 is preferentially transferred in the latter systems. We have also previously reported that, once transferred to protein, the oligosaccharides become transiently glucosylated in trypanosomatids. Depending on the species, protein-linked Glc1Man5-9GlcNAc2 have been transiently detected in cells incubated with [14C] glucose. We are now reporting that glucosidase activities degrading both Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 were detected in T. cruzi, L. samueli, and C. fasciculata. The enzymatic activities were associated with a membrane fraction; they had a neutral optimum pH value, and similarly to mammalian glucosidase II, the enzyme acting on the monoglucosylated substrate showed a decreased affinity when the latter contained fewer mannose residues. No glucosidase I-like enzyme acting on Glc3Man9GlcNAc2 was detected in any of the three above-mentioned protozoan species. This result is consistent with the fact that no oligosaccharides containing 3 glucose units occur in trypanosomatids.  相似文献   

18.
The cell envelopes of serogroup C1 Salmonella, viz. S. thompson and S. montevideo, catalyze the transfer of radiolabeled sugars from UDP-[14C]Glc and UDP-[14C]GlcNAc into the lipid-linked sugars. Using TLC and DEAE-cellulose chromatography, the radiolabeled products were identified as polyprenyl pyrophosphate N-acetylglucosamine (I), polyprenyl monophosphate N-acetylglucosamine and polyprenyl monophosphate glucose. The derivative (I) served as an acceptor for mannose transfer from GDP-Man with formation of Man1-2GlcNAc1PPPre. A similar reaction was observed after addition of synthetic GlcNAc1PPPre to the cell envelopes.  相似文献   

19.
An acidic O-specific polysaccharide was isolated from Hafnia alvei PCM 1196 lipopolysaccharide and studied by sugar and methylation analyses along with one- and two-dimensional 1H and 13C NMR spectroscopy, including NOESY and HMBC experiments. The following structure of the pentasaccharide repeating unit was established: -->4)-alpha-D-GalpA-(1-->3)-beta-D-GlcpNAc-(1-->2)-beta-D-Galp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-GlcpNAc-(1-->.  相似文献   

20.
Partially acetylated glucorhamnans have been isolated from the lipopolysaccharides of three strains of Serratia marcescens. The polymer from the reference strain (C.D.C. 864-57) for serogroup O4 has the disaccharide repeating-unit shown below, in which acetylation at position 2 of the rhamnosyl residue is approximately 90% complete. Similar glucorhamnans from the reference strain (C.D.C. 843-57) for serogroup O7 and from a pigmented strain (NM) of serogroup O14 differ only in the configuration of the L-rhamnopyranosyl residue (beta) and the extent of O-acetylation (O7, almost stoichiometric; NM, 80-90%). Glucorhamnans of the second type have been isolated previously from the lipopolysaccharides of other strains of S. marcescens, including the reference strain for serogroup O6 and another pigmented O14 strain (N.C.T.C. 1377). In all cases, the lipopolysaccharide extracts also contained acidic glycans, but the glucorhamnans are believed to constitute the integral side-chains. (Formula: see text).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号