首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GlcV is the nucleotide binding domain of the ABC-type glucose transporter of the hyperthermoacidophile Sulfolobus solfataricus. GlcV consists of two domains, an N-terminal domain containing the typical nucleotide binding-fold and a C-terminal beta-barrel domain with unknown function. The unfolding and structural stability of the wild-type (wt) protein and three mutants that are blocked at different steps in the ATP hydrolytic cycle were studied. The G144A mutant is unable to dimerize, while the E166A and E166Q mutants are defective in ATP hydrolysis and dimer dissociation. Unfolding of the wt GlcV and G144A GlcV occurred with a single transition, whereas the E166A and E166Q mutants showed a second transition at a higher melting temperature indicating an increased stability of the ABCalpha/beta subdomain. The structural stability of GlcV was increased in the presence of nucleotides suggesting that the transition corresponds to the unfolding of the NBD domain. Unfolding of the C-terminal domain appears to occur at temperatures above the unfolding of the NBD which coincides with the aggregation of the protein. Analysis of the domain organization of GlcV by trypsin digestion demonstrates cleavage of the NBD domain into three fragments, while nucleotides protect against proteolysis. The cleaved GlcV protein retained the ability to bind nucleotides and to dimerize. These data indicate that the wt GlcV NBD domain unfolds as a single domain protein, and that its stability is modified by mutations in the glutamate after the Walker B motif and by nucleotide binding.  相似文献   

2.
The ABC-ATPase GlcV from Sulfolobus solfataricus energizes an ABC transporter mediating glucose uptake. In ABC transporters, two ABC-ATPases are believed to form a head-to-tail dimer, with both monomers contributing conserved residues to each of the two productive active sites. In contrast, isolated GlcV, although active, behaves apparently as a monomer in the presence of ATP-Mg(2+), AMPPNP-Mg(2+) or ATP alone. To resolve the oligomeric state of the active form of GlcV, we analysed the effects of changing the putative catalytic base, residue E166, into glutamine or alanine. Both mutants are, to different extents, defective in ATP hydrolysis, and gel-filtration experiments revealed their dimerization in the presence of ATP-Mg(2+). Mutant E166Q forms dimers also in the presence of ATP alone, without Mg(2+), whereas dimerization of mutant E166A requires both ATP and Mg(2+). These results confirm earlier reports for other ABC-ATPases, but for the first time suggest the occurrence of a fast equilibrium between ATP-bound monomers and ATP-bound dimers. We further mutated two highly conserved residues of the ABC signature motif, S142 and G144, into alanine. The G144A mutant is completely inactive and fails to dimerize, indicating an essential role of this residue in stabilizing the productive dimeric state. Mutant S142A retained considerable activity, and was able to dimerize, thus implying that the interaction of the serine with ATP is not essential for dimerization and catalysis. Furthermore, although the E166A and G144A mutants each alone are inactive, they produce an active heterodimer, showing that disruption of one active site can be tolerated. Our data suggest that ABC-ATPases with partially degenerated catalytic machineries, as they occur in vivo, can still form productive dimers to drive transport.  相似文献   

3.
Ogura K  Okamura H  Katahira M  Katoh E  Inagaki F 《FEBS letters》2012,586(16):2548-2554
Most calmodulin (CaM) in apo and Ca(2+)-bound states show a dumb-bell-like structure, involving the N- and C-terminal domains, connected with a flexible linker. However, Ca(2+)-bound yeast calmodulin (yCaM) takes on a unique globular structure; the target-binding site of this protein is autoinhibited. We applied NMR relaxation dispersion experiments to yCaM in the Ca(2+)-bound state. The amide (15)N and (1)H(N) relaxation dispersion profiles indicated the presence of conformational dynamics for specific residues at the interface between the N- and C-terminal domains. We conclude that these conformational dynamics were derived from the mobility of the C-terminal domain.  相似文献   

4.
BACKGROUND: The bacterial heat shock locus ATPase HslU is an AAA(+) protein that has structures known in many nucleotide-free and -bound states. Nucleotide is required for the formation of the biologically active HslU hexameric assembly. The hexameric HslU ATPase binds the dodecameric HslV peptidase and forms an ATP-dependent HslVU protease. RESULTS: We have characterized four distinct HslU conformational states, going sequentially from open to closed: the empty, SO(4), ATP, and ADP states. The nucleotide binds at a cleft formed by an alpha/beta domain and an alpha-helical domain in HslU. The four HslU states differ by a rotation of the alpha-helical domain. This classification leads to a correction of nucleotide identity in one structure and reveals the ATP hydrolysis-dependent structural changes in the HslVU complex, including a ring rotation and a conformational change of the HslU C terminus. This leads to an amended protein unfolding-coupled translocation mechanism. CONCLUSIONS: The observed nucleotide-dependent conformational changes in HslU and their governing principles provide a framework for the mechanistic understanding of other AAA(+) proteins.  相似文献   

5.
GlcV is the nucleotide binding domain of the ABC-type glucose transporter of the hyperthermoacidophile Sulfolobus solfataricus. GlcV consists of two domains, an N-terminal domain containing the typical nucleotide binding-fold and a C-terminal β-barrel domain with unknown function. The unfolding and structural stability of the wild-type (wt) protein and three mutants that are blocked at different steps in the ATP hydrolytic cycle were studied. The G144A mutant is unable to dimerize, while the E166A and E166Q mutants are defective in ATP hydrolysis and dimer dissociation. Unfolding of the wt GlcV and G144A GlcV occurred with a single transition, whereas the E166A and E166Q mutants showed a second transition at a higher melting temperature indicating an increased stability of the ABCα/β subdomain. The structural stability of GlcV was increased in the presence of nucleotides suggesting that the transition corresponds to the unfolding of the NBD domain. Unfolding of the C-terminal domain appears to occur at temperatures above the unfolding of the NBD which coincides with the aggregation of the protein. Analysis of the domain organization of GlcV by trypsin digestion demonstrates cleavage of the NBD domain into three fragments, while nucleotides protect against proteolysis. The cleaved GlcV protein retained the ability to bind nucleotides and to dimerize. These data indicate that the wt GlcV NBD domain unfolds as a single domain protein, and that its stability is modified by mutations in the glutamate after the Walker B motif and by nucleotide binding.  相似文献   

6.
SufC, a cytoplasmic ABC-ATPase, is one of the most conserved Suf proteins. SufC forms a stable complex with SufB and SufD, and the SufBCD complex interacts with other Suf proteins in the Fe-S cluster assembly. We have determined the crystal structure of SufC from Thermus thermophilus HB8 in nucleotide-free and ADP-Mg-bound states at 1.7A and 1.9A resolution, respectively. The overall architecture of the SufC structure is similar to other ABC ATPases structures, but there are several specific motifs in SufC. Three residues following the end of the Walker B motif form a novel 3(10) helix which is not observed in other ABC ATPases. Due to the novel 3(10) helix, a conserved glutamate residue involved in ATP hydrolysis is flipped out. Although this unusual conformation is unfavorable for ATP hydrolysis, salt-bridges formed by conserved residues and a strong hydrogen-bonding network around the novel 3(10) helix suggest that the novel 3(10) helix of SufC is a rigid conserved motif. Compared to other ABC-ATPase structures, a significant displacement occurs at a linker region between the ABC alpha/beta domain and the alpha-helical domain. The linker conformation is stabilized by a hydrophobic interaction between conserved residues around the Q loop. The molecular surfaces of SufC and the C-terminal helices of SufD (PDB code: 1VH4) suggest that the unusual linker conformation conserved among SufC proteins is probably suitable for interacting with SufB and SufD.  相似文献   

7.
DdCAD-1 is a novel Ca(2+)-dependent cell adhesion molecule that lacks a hydrophobic signal peptide and a transmembrane domain. DdCAD-1 is expressed by the social amoeba Dictyostelium discoideum at the onset of development. It is synthesized as a soluble protein and then transported to the plasma membrane by contractile vacuoles. Here we describe the novel features of the solution structures of Ca(2+)-free and Ca(2+)-bound monomeric DdCAD-1. DdCAD-1 contains two beta-sandwich domains, belonging to the betagamma-crystallin and immunoglobulin fold classes, respectively. Whereas the N-terminal domain has a major role in homophilic binding, the C-terminal domain tethers the protein to the cell membrane. From structural and mutational analyses, we propose a model for the Ca(2+)-bound DdCAD-1 dimer as a basis for understanding DdCAD-1-mediated cell-cell adhesion at the molecular level. Our results provide new insights into Ca(2+)-dependent mechanisms for cell-cell adhesion.  相似文献   

8.
Obg comprises a unique family of high-molecular mass GTPases conserved from bacteria to eukaryotes. Bacterial Obg is essential for cellular growth, sporulation, and differentiation. Here, we report the crystal structure of the full-length form of Obg from Thermus thermophilus HB8 at 2.07 A resolution, in the nucleotide-free state. It reveals a three-domain arrangement, composed of the N-terminal domain, the guanine nucleotide-binding domain (G domain), and the C-terminal domain. The N-terminal and G domains have the Obg fold and the Ras-like fold, respectively. These global folds are similar to those of the recently published structure of the C-terminal domain-truncated form of Obg from Bacillus subtilis. On the other hand, the C-terminal domain of Obg was found to have a novel fold (the OCT fold). A comparison of the T.thermophilus and B.subtilis nucleotide-free Obg structures revealed significant conformational changes in the switch-I and switch-II regions of the G domain. Notably, the N-terminal domain is rotated drastically, by almost 180 degrees, around the G domain axis. In the T.thermophilus Obg crystal, the nucleotide-binding site of the G domain interacts with the C-terminal domain of the adjacent molecule. These data suggest a possible domain rearrangement of Obg, and a potential role of the C-terminal domain in the regulation of the nucleotide-binding state.  相似文献   

9.
Mori M  Konno T  Ozawa T  Murata M  Imoto K  Nagayama K 《Biochemistry》2000,39(6):1316-1323
The voltage-dependent sodium channel (VDSC) interacts with intracellular molecules to modulate channel properties and localizations in neuronal cells. To study protein interactions, we applied yeast two-hybrid screening to the cytoplasmic C-terminal domain of the main pore-forming alpha-subunit. We found a novel interaction between the C-terminal domain and calmodulin (CaM). By two-hybrid interaction assays, we specified the interaction site of VDSC in a C-terminal region, which is composed of 38 amino acid residues and contains both IQ-like and Baa motifs. Using a fusion protein of the C-terminal domain, we showed that interaction with CaM occurred in the presence and absence of Ca(2+). Two synthetic peptides, each covering the IQ-like (NaIQ) or the Baa motifs (NaBaa), were used to examine the binding property by a gel mobility shift assay. Although the NaIQ and NaBaa sequences are overlapped, NaBaa binds only to Ca(2+)-bound Ca(2+)CaM, whereas NaIQ binds to both Ca(2+)CaM and Ca(2+)-free apoCaM. Fluorescence spectroscopy of dansylated CaM showed Ca(2+)-dependent spectral changes not only for NaBaa.CaM but also for NaIQ.CaM. The results, taken together with other results, indicate that whereas the NaBaa.CaM complex is formed in a Ca(2+)-dependent manner, the NaIQ.CaM complex has two conformational states, distinct with respect to the peptide binding site and the CaM conformation, depending on the Ca(2+) concentration. These observations suggest the possibility that VDSC is functionally modulated through the direct CaM interaction and the Ca(2+)-dependent conformational transition of the complex.  相似文献   

10.
FtsH is a cytoplasmic membrane-integrated, ATP-dependent metalloprotease, which processively degrades both cytoplasmic and membrane proteins in concert with unfolding. The FtsH protein is divided into the N-terminal transmembrane region and the larger C-terminal cytoplasmic region, which consists of an ATPase domain and a protease domain. We have determined the crystal structures of the Thermus thermophilus FtsH ATPase domain in the nucleotide-free and AMP-PNP- and ADP-bound states, in addition to the domain with the extra preceding segment. Combined with the mapping of the putative substrate binding region, these structures suggest that FtsH internally forms a hexameric ring structure, in which ATP binding could cause a conformational change to facilitate transport of substrates into the protease domain through the central pore.  相似文献   

11.
The structure of the free form HIV gp120, critical for therapeutic agent development, is unavailable due to its high flexibility. Previous thermodynamic data, structural analysis and simulation results have suggested a large conformational change in the core domain upon CD4 binding. The bridging sheet, which consists of four beta-strands with beta20/21 nestling against the inner/outer domains and beta2/3 facing outward, more exposed to the solvent, was proposed to be unfolded in the native state. In order to test this proposition and to characterize the native conformations, we performed potential mean force (PMF) molecular dynamics (MD) simulations on the CD4-bound crystal structure. We pushed the bridging sheet away from the inner and outer domain to explore the accessible conformational space for the bridging sheet. In addition, we performed conventional MD simulations on structures with the bridging sheet partially unfolded to investigate the stability of the association between the inner and outer domains. Based on the free energy profiles, we find that the whole bridging sheet is unlikely to unfold without other concurrent conformational changes. On the other hand, the partial bridging sheet, beta strands 2/3, can switch its conformation from the folded to the unfolded state. Furthermore, relaxation of conformation with partially unfolded bridging sheet through MD simulations leads to a conformation with beta strands 20/21 quickly re-anchoring against the inner and outer domains. Such a conformation, although lacking some of the hydrophobic interactions present in the CD4-bound structure, displayed high stability as further indicated by other restrained MD simulations. The relevance of this conformation to the free form structure and the pathway for conformational change from the free form to the CD4-bound structure is discussed in detail in light of the available unliganded SIV gp120 crystal structure.  相似文献   

12.
Kinesin motor proteins release nucleotide upon interaction with microtubules (MTs), then bind and hydrolyze ATP to move along the MT. Although crystal structures of kinesin motors bound to nucleotides have been solved, nucleotide-free structures have not. Here, using cryomicroscopy and three-dimensional (3D) reconstruction, we report the structure of MTs decorated with a Kinesin-14 motor, Kar3, in the nucleotide-free state, as well as with ADP and AMPPNP, with resolution sufficient to show alpha helices. We find large structural changes in the empty motor, including melting of the switch II helix alpha4, closure of the nucleotide binding pocket, and changes in the central beta sheet reminiscent of those reported for nucleotide-free myosin crystal structures. We propose that the switch II region of the motor controls docking of the Kar3 neck by conformational changes in the central beta sheet, similar to myosin, rather than by rotation of the motor domain, as proposed for the Kif1A kinesin motor.  相似文献   

13.
Due to their dynamic ensemble nature and a deficiency of experimental restraints, disordered states of proteins are difficult to characterize structurally. Here, we have expanded upon our previous work on the unfolded state of the Drosophila drk N-terminal (drkN) SH3 domain with our program ENSEMBLE, which assigns population weights to pregenerated conformers in order to calculate ensembles of structures whose properties are collectively consistent with experimental measurements. The experimental restraint set has been enlarged with newly measured paramagnetic relaxation enhancements from Cu(2+) bound to an amino terminal Cu(2+)-Ni(2+) binding (ATCUN) motif as well as nuclear Overhauser effect (NOE) and hydrogen exchange data from recent studies. In addition, two new pseudo-energy minimization algorithms have been implemented that have dramatically improved the speed of ENSEMBLE population weight assignment. Finally, we have greatly improved our conformational sampling by utilizing a variety of techniques to generate both random structures and structures that are biased to contain elements of native-like or non-native structure. Although it is not possible to uniquely define a representative structural ensemble, we have been able to assess various properties of the drkN SH3 domain unfolded state by performing ENSEMBLE minimizations of different conformer pools. Specifically, we have found that the experimental restraint set enforces a compact structural distribution that is not consistent with an overall native-like topology but shows preference for local non-native structure in the regions corresponding to the diverging turn and the beta5 strand of the folded state and for local native-like structure in the region corresponding to the beta6 and beta7 strands. We suggest that this approach could be generally useful for the structural characterization of disordered states.  相似文献   

14.
Calmodulin (CaM) is a Ca(2+)-binding protein that functions as a ubiquitous Ca(2+)-signaling molecule, through conformational changes from the "closed" apo conformation to the "open" Ca(2+)-bound conformation. Mg(2+) also binds to CaM and stabilizes its folded structure, but the NMR signals are broadened by slow conformational fluctuations. Using the E104D/E140D mutant, designed to decrease the signal broadening in the presence of Mg(2+) with minimal perturbations of the overall structure, the solution structure of the Mg(2+)-bound form of the CaM C-terminal domain was determined by multidimensional NMR spectroscopy. The Mg(2+)-induced conformational change mainly occurred in EF hand IV, while EF-hand III retained the apo structure. The helix G and helix H sides of the binding sequence undergo conformational changes needed for the Mg(2+) coordination, and thus the helices tilt slightly. The aromatic rings on helix H move to form a new cluster of aromatic rings in the hydrophobic core. Although helix G tilts slightly to the open orientation, the closed conformation is maintained. The fact that the Mg(2+)-induced conformational changes in EF-hand IV and the hydrophobic core are also seen upon Ca(2+) binding suggests that the Ca(2+)-induced conformational changes can be divided into two categories, those specific to Ca(2+) and those common to Ca(2+) and Mg(2+).  相似文献   

15.
16.
Mukherjee S  Kuchroo K  Chary KV 《Biochemistry》2005,44(34):11636-11645
One of the calcium binding proteins from Entamoeba histolytica (EhCaBP) is a 134 amino acid residue long (M(r) approximately 14.9 kDa) double domain EF-hand protein containing four Ca(2+) binding sites. CD and NMR studies reveal that the Ca(2+)-free form (apo-EhCaBP) exists in a partially collapsed form compared to the Ca(2+)-bound (holo) form, which has an ordered structure (PDB ID ). Deuterium exchange studies on the partially structured apo-EhCaBP reveal that the C-terminal domain is better structured than the N-terminal domain. The protein can be reversibly folded and unfolded upon addition of Ca(2+) and EGTA, respectively. Titration shows a slow initial folding of the apo form with increasing Ca(2+) concentration, followed by a highly cooperative folding to its final state at a certain threshold of Ca(2+). Ca(2+) and the EGTA titration taken together show that site II in the N-terminal domain has the highest affinity for Ca(2+) contrary to earlier studies. Further, this study has thrown light on the relative Ca(2+) binding affinity and specificity of each site in the intact protein. A structural model for the partially collapsed form of apo-EhCaBP and its equilibrium folding to its completely folded holo state has been suggested. Large conformational changes seen in transforming from the apo to holo form of EhCaBP suggest that this protein should be functioning as a sensor protein and might have a significant role in host-parasite recognition.  相似文献   

17.
Peptidylarginine deiminase 4 (PAD4) is a Ca(2+)-dependent enzyme that catalyzes the conversion of protein arginine residues to citrulline. Its gene is a susceptibility locus for rheumatoid arthritis. Here we present the crystal structure of Ca(2+)-free wild-type PAD4, which shows that the polypeptide chain adopts an elongated fold in which the N-terminal domain forms two immunoglobulin-like subdomains, and the C-terminal domain forms an alpha/beta propeller structure. Five Ca(2+)-binding sites, none of which adopt an EF-hand motif, were identified in the structure of a Ca(2+)-bound inactive mutant with and without bound substrate. These structural data indicate that Ca(2+) binding induces conformational changes that generate the active site cleft. Our findings identify a novel mechanism for enzyme activation by Ca(2+) ions, and are important for understanding the mechanism of protein citrullination and for developing PAD-inhibiting drugs for the treatment of rheumatoid arthritis.  相似文献   

18.
Acellular slime mold, Physarum polycephalum, has a unique wound-healing system. When cytoplasm of plasmodia is exposed to extracellular fluid, calcium binding protein 40 (CBP40) seals damaged areas, forming large aggregates Ca(2+) dependently. Part of the CBP40 is truncated at the N terminus by a proteinase in plasmodia (CBP40delta), which does not aggregate in the Ca(2+)-bound form. Here we report the crystal structures of CBP40delta in both the metal-free and the Ca(2+)-bound states. Both structures consist of three domains: coiled-coil, intervening, and EF-hand. The topology of the EF-hand domain is similar to that of calpain. The N-terminal half of CBP40Delta interacts with the C-terminal EF-hands through a large hydrophobic interface, necessary for high Ca(2+) affinity. Conformational change upon Ca(2+) binding is small; however, the structure of CBP40delta provides novel insights into the mechanism of Ca(2+)-dependent oligomerization.  相似文献   

19.
de Alba E  Tjandra N 《Biochemistry》2004,43(31):10039-10049
Nucleobindin, also known as calnuc, participates in Ca2+ storage in the Golgi, as well as in other biological processes that involve DNA-binding and protein-protein interactions. We have determined the three-dimensional solution structure of the Ca(2+)-binding domain of nucleobindin by NMR showing that it consists of two EF-hand motifs. The NMR structure indicates that the phi and psi angles of residues in both motifs are very similar, despite the noncanonical sequence of the C-terminal EF-hand, which contains an arginine residue instead of the typical glycine at the sixth position of the 12-residue loop. The relative orientation of the alpha-helices in the N-terminal EF-hand falls within the common arrangement found in most EF-hand structures. In contrast, the noncanonical EF-hand deviates from the average orientation. The two helix-loop-helix moieties are in the open conformation characteristic of the Ca(2+)-bound state. We find that both motifs bind Ca2+ with apparent dissociation constants of 47 and 40 microM for the noncanonical and the canonical EF-hand, respectively. The Ca(2+)-binding domain of nucleobindin is unstructured in the absence of Ca2+ and folds upon Ca2+ addition. NMR relaxation data and structural studies of the folded domain indicate that it undergoes slow dynamics, suggesting that it is floppier and less compact than a globular domain.  相似文献   

20.
A nucleotide-dependent conformational change regulates actin filament dynamics. Yet, the structural basis of this mechanism remains controversial. The x-ray crystal structure of tetramethylrhodamine-5-maleimide-actin with bound AMPPNP, a non-hydrolyzable ATP analog, was determined to 1.85-A resolution. A comparison of this structure to that of tetramethylrhodamine-5-maleimide-actin with bound ADP, determined previously under similar conditions, reveals how the release of the nucleotide gamma-phosphate sets in motion a sequence of events leading to a conformational change in subdomain 2. The side chain of Ser-14 in the catalytic site rotates upon Pi release, triggering the rearrangement of the loop containing the methylated His-73, referred to as the sensor loop. This in turn causes a transition in the DNase I-binding loop in subdomain 2 from a disordered loop in ATP-actin to an ordered alpha-helix in ADP-actin. Despite this conformational change, the nucleotide cleft remains closed in ADP-actin, similar to ATP-actin. An analysis of the existing structures of members of the actin superfamily suggests that the cleft is open in the nucleotide-free state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号