首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The factors identified to be important for the aerobic biodegradation of alpha-hexachlorocyclohexane (alpha-HCH) in a soil slurry are temperature, auxiliary carbon source, substrate concentration, and soil inhomogeneities. Temperatures in the range of 20 to 30 degrees C were determined to be most favorable for biodegradation of alpha-HCH. No alpha-HCH biodegradation was detected at temperatures below 4 degrees C and above 40 degrees C. The addition of auxiliary organic carbon compounds showed repressive effects on alpha-HCH biomineralization. Increased oxygen partial pressures reduced the repressive effects of added auxiliary organic carbon compounds. A linear relationship between alpha-HCH concentration and its conversion rate was found in a Lineweaver-Burk plot. Inhomogeneities such as clumping of alpha-HCH significantly affected its biodegradation. Inhomogeneity as an influence on biodegradation has not drawn sufficient attention in the past, even though it certainly has affected both laboratory studies and the application of biotechnological methods to clean up contaminated sites. On the basis of metabolites detected during degradation experiments, the initial steps of aerobic alpha-HCH bioconversion in a soil slurry are proposed.  相似文献   

2.
Incomplete combustion of field crop residues results in the production of char, a material rich in charcoal-type substances. Consequently, char is an effective adsorbent of organic compounds and when incorporated into soil may adsorb soil-applied pesticides, thereby altering their susceptibility to biodegradation. We investigated the relative importance of char, soil pH and initial substrate concentration in biodegradation of pesticides in soils by measuring the biodegradation of benzonitrile in soil as a function of soil char content (0% and 1% by weight), initial benzonitrile concentration (0.1, 1.06, and 10.2 mg l−1) and soil pH (5.2, 6.9 and 8.5). Preliminary experiments revealed that wheat straw char had a much greater benzonitrile sorption capacity than did soil to which the char was added. The extent of benzonitrile degradation decreased as initial benzonitrile concentration increased in both buffer solution and soil slurry. In contrast, the degradation increased as initial benzonitrile concentration increased in char-amended slurry. In un-amended soil slurry, the benzonitrile degradation was lower at pH 5.2 than at pH 6.9 or 8.5, but in char-amended soil slurry the degradation was not affected by pH, again presumably due to adsorption of benzonitrile by the char. Adsorption by soil char appears to be more important than either initial substrate concentration or soil pH in controlling benzonitrile degradation in char-amended soil slurry. The presence of crop residue-derived chars may alter pesticide degradation patterns normally observed in soils and thus significantly affect their environmental fate.  相似文献   

3.
Aerobic conditions proved to be best for the microbiol conversion of alpha-hexachlorocyclohexane (alpha-HCH) in a soil slurry. The dry soil contained 400 mg of alpha-HCH per kg. This xenobiotic compound was mineralized within about 18 days at an initial rate of 23 mg/kg of soil per day by the mixed native microbial population of the soil. The only intermediate that was detected during breakdown was pentachlorocyclohexene, which was detected at very small concentrations. Alpha-HCH was also bioconverted under methanogenic conditions. However, a rather long acclimation period (about 30 days) was necessary before degradation started, at a rate of 13 mg/kg of soil per day. Mass balance calculations showed that about 85% of the initial alpha-HCH that was present was converted to monochlorobenzene, 3,5-dichlorophenol, and a trichlorophenol isomer, possibly 2,4,5-trichlorophenol. Under both denitrifying and sulfate-reducing conditions, no significant bioconversion of alpha-HCH was observed. The beta isomer of HCH was recalcitrant at all of the four redox conditions studied. We propose that the specific spatial chloride arrangement of the beta isomer is responsible for its stability. The results reported here with complex soil slurry systems showed that alpha-HCH is, in contrast to the existing data in the literature, best degraded biologically in the presence of oxygen.  相似文献   

4.
Aerobic conditions proved to be best for the microbiol conversion of alpha-hexachlorocyclohexane (alpha-HCH) in a soil slurry. The dry soil contained 400 mg of alpha-HCH per kg. This xenobiotic compound was mineralized within about 18 days at an initial rate of 23 mg/kg of soil per day by the mixed native microbial population of the soil. The only intermediate that was detected during breakdown was pentachlorocyclohexene, which was detected at very small concentrations. Alpha-HCH was also bioconverted under methanogenic conditions. However, a rather long acclimation period (about 30 days) was necessary before degradation started, at a rate of 13 mg/kg of soil per day. Mass balance calculations showed that about 85% of the initial alpha-HCH that was present was converted to monochlorobenzene, 3,5-dichlorophenol, and a trichlorophenol isomer, possibly 2,4,5-trichlorophenol. Under both denitrifying and sulfate-reducing conditions, no significant bioconversion of alpha-HCH was observed. The beta isomer of HCH was recalcitrant at all of the four redox conditions studied. We propose that the specific spatial chloride arrangement of the beta isomer is responsible for its stability. The results reported here with complex soil slurry systems showed that alpha-HCH is, in contrast to the existing data in the literature, best degraded biologically in the presence of oxygen.  相似文献   

5.
This work develops and utilizes a non-steady-state model for evaluating the interactions between sorption and biodegradation of hydrophobic organic compounds in soil-slurry systems. The model includes sorption/desorption of a target compound, its utilization by microorganisms as a primary substrate existing in the dissolved phase, and/or the sorbed phase in biomass and soil, oxygen transfer, and oxygen utilization as an electron acceptor. Biodegradation tests with phenanthrene were conducted in liquid and soil-slurry systems. The soil-slurry tests were performed with very different mass transfer rates: fast mass transfer in a flask test at 150 rpm, and slow mass transfer in a roller-bottle test at 2 rpm. The results of liquid tests indicate that biodegradation of the soil-soluble organic fraction did not significantly enhance the biodegradation rate. In the slurry tests, phenanthrene was degraded more rapidly than in liquid tests, but at a similar rate in both slurry systems. Modeling analyses with several hypotheses indicate that a model without biodegradation of compound sorbed to the soil was not able to account for the rapid degradation of phenanthrene, particularly in the roller-bottle slurry test. The model with sorbed-phase biodegradation and the same biokinetic parameters, but unique mass transfer coefficients, simulated the experimental data in both slurry tests most successfully. Reduced mass transfer resistance to bacteria attached to the soil is the most likely phenomenon accounting for rapid sorbed-phase biodegradation.  相似文献   

6.
A bacterium designated strain B113, able to degrade benzene, toluene, and ethylbenzene compounds (BTE), was isolated from gasoline-contaminated sediment at a gas station in Geoje, Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Acinetobacter. The biodegradation rates of benzene, toluene, and ethylbenzene were relatively low in MSB broth, but the addition of yeast extract had a substantial impact on the biodegradation of BTE compounds, which suggested that yeast extract might provide a factor that was necessary for its growth or BTE biodegradation activity. However, interestingly, the biodegradation of BTE compounds occurred very quickly in slurry systems amended with sterile soil. Moreover, if soil was combusted first to remove organic matters, the enhancement effect on BTE biodegradation was lost, indicating that some insoluble organic compounds were probably beneficial for BTE degradation in contaminated sediment. This study suggests that strain B113 may play an important role for biodegradation of BTE in the contaminated site.  相似文献   

7.
Polybrominated diphenyl ethers (PBDEs) are bioaccumulative, toxic and persistent, globally distributed organic chemicals in environment. However, very little is known for their aerobic biodegradation. In this research, 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) was selected as a model congener of PBDEs to study its aerobic biodegradation. A new BDE-47 degrading strain BFR01 identified as Pseudomonas stutzeri was isolated from polluted soil in a former brominated flame retardant production corporation. Stain BFR01 could utilize BDE-47 as a sole source of carbon and energy, and transformed 97.94% of BDE-47 in two weeks; the biodegradation of BDE-47 fitted well with the first-order kinetics, with the first-order kinetics constant of 0.32 d−1. The biodegradation efficiency of stain BFR01 was higher than other reported PBDEs aerobic degrading bacteria. The biodegradation efficiency achieved maximum at pH 7.0 and 40 °C. The presence of additional carbon sources could enhance the biodegradation efficiency of BDE-47 by 1–6%. Furthermore, no lower brominated diphenyl ethers or biphenyl were detected, suggesting that the pathway of BDE-47 biodegradation by strain BFR01 might not be debromination with lower brominated diphenyl ethers as products. This is the first report of aerobic degradation of BDE-47 by P. stutzeri.  相似文献   

8.
This study describes the removal of polycyclic aromatic hydrocarbons (PAHs) from creosote oil contaminated soil by modified Fenton's reaction in laboratory-scale column experiments and subsequent aerobic biodegradation of PAHs by indigenous bacteria during incubation of the soil. The effect of hydrogen peroxide addition for 4 and 10 days and saturation of soil with H(2)O(2) on was studied. In both experiments the H(2)O(2) dosage was 0.4 g H(2)O(2)/g soil. In completely H(2)O(2)-saturated soil the removal of PAHs (44% within 4 days) by modified Fenton reaction was uniform over the entire soil column. In non-uniformly saturated soil, PAH removal was higher in completely saturated soil (52% in 10 days) compared to partially saturated soil, with only 25% in 10 days. The effect of the modified Fenton's reaction on the microbial activity in the soil was assessed based on toxicity tests towards Vibrio fischeri, enumeration of viable and dead cells, microbial extracellular enzyme activity, and oxygen consumption and carbon dioxide production during soil incubation. During the laboratory-scale column experiments, the toxicity of column leachate towards Vibrio fischeri increased as a result of the modified Fenton's reaction. The activities of the microbial extracellular enzymes acetate- and acidic phosphomono-esterase were lower in the incubated modified Fenton's treated soil compared to extracellular enzyme activities in untreated soil. Abundance of viable cells was lower in incubated modified Fenton treated soil than in untreated soil. Incubation of soil in serum bottles at 20 degrees C resulted in consumption of oxygen and formation of carbon dioxide, indicating aerobic biodegradation of organic compounds. In untreated soil 20-30% of the PAHs were biodegraded during 2 months of incubation. Incubation of chemically treated soil slightly increased PAH-removal compared to PAH-removal in untreated soil.  相似文献   

9.
添加氧化铁对水稻土中H2、CO2和CH4形成的影响   总被引:8,自引:0,他引:8  
水稻土是甲烷产生的重要源地.厌氧条件下甲烷的形成与有机质厌氧降解产生的乙酸、H2和CO2有关.氧化铁作为电子受体可有效地竞争有机质向甲烷的转化,其抑制作用机理可能与乙酸、H2和CO2的有效消耗有关.通过向水稻土泥浆中添加无定形氧化铁和纤铁矿.分别测定了25℃厌氧恒温培养105d过程中的H2、CO2和CH4的浓度变化.结果表明,添加无定形氧化铁及纤铁矿可导致H2浓度显著降低;无定形氧化铁对H2消耗的影响明显大于纤铁矿;添加不同氧化铁对CO2浓度的影响与H2浓度的变化有相同的趋势;添加氧化铁能显著抑制水稻土中甲烷形成,并导致有机碳的转移发生变化,使得CH4—C显著降低,气相中CO2—C量减少,而由土壤泥浆固定的CO3^2-—C量显著增加.  相似文献   

10.
The objective of this publication is to present a new dynamic aerobic biodegradation test method simulating a river. A laboratory cascade test system and standardized batch shake flask tests were used for biodegradation studies with the non-volatile and non-sorbing model compounds 2,4-dinitrophenol, naphthalene-1-sulphonic acid and sulphanilic acid. To be closer to the often very low concentrations of substances in the environment the concentrations of the compounds used were standard test concentrations and lower. 14C labelled compounds were measured at 50 μg/l, capillary electrophoresis at 5000 μg/l and the removal of dissolved organic carbon at 50000 μg/l. The test results obtained confirmed the known ultimate biodegradability of the test compounds and showed that biodegradation degrees, rates and degradation durations depended on the test systems, the concentrations of test compounds and the inocula. The river model is a suitable simulation test for natural dynamic surface waters which can be used to perform biodegradability studies at low test concentrations if adequate analytical tools, preferably radioactive-labelled substances, are available.  相似文献   

11.
Tetrabromobisphenol A (TBBPA) is a flame retardant that is used as an additive during manufacturing of plastic polymers and electronic circuit boards. Little is known about the fate of this compound in the environment. In the current study we investigated biodegradation of TBBPA, as well as 2,4,6-tribromophenol (TBP), in slurry of anaerobic sediment from a wet ephemeral desert stream bed contaminated with chemical industry waste. Anaerobic incubation of the sediment with TBBPA and peptone-tryptone-glucose-yeast extract medium resulted in a 80% decrease in the TBBPA concentration and accumulation of a single metabolite. This metabolite was identified by gas chromatography-mass spectrometry (GC-MS) as nonbrominated bisphenol A (BPA). On the other hand, TBP was reductively dehalogenated to phenol, which was further metabolized under anaerobic conditions. BPA persisted in the anaerobic slurry but was degraded aerobically. A gram-negative bacterium (strain WH1) was isolated from the contaminated soil, and under aerobic conditions this organism could use BPA as a sole carbon and energy source. During degradation of BPA two metabolites were detected in the culture medium, and these metabolites were identified by GC-MS and high-performance liquid chromatography as 4-hydroxybenzoic acid and 4-hydroxyacetophenone. Both of those compounds were utilized by WH1 as carbon and energy sources. Our findings demonstrate that it may be possible to use a sequential anaerobic-aerobic process to completely degrade TBBPA in contaminated soils.  相似文献   

12.
The potential for biodegradation of polycyclic aromatic hydrocarbons (PAHs)at low temperature and under anaerobic conditions is not well understood, but such biodegradation would be very useful for remediation of polluted sites. Biodegradation of a mixture of 11 different PAHs with two to five aromatic rings, each at a concentration of 10 micro g/ml, was studied in enrichment cultures inoculated with samples of four northern soils. Under aerobic conditions, low temperature severely limited PAH biodegradation. After 90 days, aerobic cultures at 20 degrees C removed 52 to 88% of the PAHs. The most extensive PAH degradation under aerobic conditions at 7 degrees C,53% removal, occurred in a culture from creosote-contaminated soil. Low temperature did not substantially limit PAH biodegradation under nitrate-reducing conditions. Under nitrate-reducing conditions,naphthalene, 2-methylnaphthalene, fluorene, and phenanthrene were degraded. The most extensive PAH degradation under nitrate-reducing conditions at 7 degrees C, 39% removal, occurred in a culture from fuel-contaminated Arctic soil. In separate transfer cultures from the above Arctic soil, incubated anaerobically at 7 degrees C, removal of 2-methylnaphthalene and fluorene was stoichiometrically coupled to nitrate removal. Ribosomal intergenic spacer analysis suggested that enrichment resulted in a few predominant bacterial populations,including members of the genera Acidovorax,Bordetella, Pseudomonas, Sphingomonas, and Variovorax. Predominant populations from different soils often included phylotypes with nearly identical partial 16S rRNA gene sequences (i.e., same genus) but never included phylotypes with identical ribosomal intergenic spacers (i.e., different species or subspecies). The composition of the enriched communities appeared to be more affected by presence of oxygen, than by temperature or source of the inoculum.  相似文献   

13.
AIMS: To study biomineralization of Monocrotophos (MCP) and identify the metabolites formed during biodegradation. METHODS AND RESULTS: Two cultures, namely Arthrobacter atrocyaneus MCM B-425 and Bacillus megaterium MCM B-423, were isolated by enrichment and adaptation culture technique from soil exposed to MCP. The isolates were able to degrade MCP to the extent of 93% and 83%, respectively, from synthetic medium containing MCP at the concentration of 1000 mg x l(-1), within 8 d, under shake culture condition at 30 degrees C. The cultures degraded MCP to carbon dioxide, ammonia and phosphates through formation of one unknown compound--Metabolite I, valeric or acetic acid and methylamine, as intermediate metabolites. The enzymes phosphatase and esterase, reported to be involved in biodegradation of organophosphorus compounds, were detected in both the organisms. CONCLUSIONS:Arthrobacter atrocyaneus MCM B-425 and B. megaterium MCM B-423 isolated from soil exposed to MCP were able to mineralize MCP to carbon dioxide, ammonia and phosphates. SIGNIFICANCE AND IMPACT OF THE STUDY: Pathway for biodegradation of MCP in plants and animals has been reported. A microbial metabolic pathway of degradation involving phosphatase and esterase enzymes has been proposed. The microbial cultures could be used for bioremediation of wastewater or soil contaminated with Monocrotophos.  相似文献   

14.
Energetic compounds have been used in a variety of industrial and military applications worldwide leading to widespread environmental contamination. Many of these compounds are toxic and resist degradation by oxidative enzymes resulting in a need for alternative remediation methods. It has been shown that trinitrotoluene (TNT)-contaminated soil subjected to treatment in strictly anaerobic bioreactors results in tight binding of TNT transformation products to soil organic matter. The research presented here examined the fate of TNT and its metabolites in bioreactors under three different aeration regimes. In all treatment regimes, the typical metabolites of aminodinitrotoluenes and diaminonitrotoluenes were observed prior to irreversible binding into the soil fraction of the slurry. Significant transformation of TNT into organic acids or simple diols, as others report in prior work, was not observed in any of the treatments and is an unlikely fate of TNT in anaerobic soil slurries. These results indicate that aeration does not dramatically affect transformation or fate of TNT in reactor systems that receive a rich carbon source but does affect the rate at which metabolites become tightly bound to the soil. The most rapid transformations and lowest redox potentials were observed in reactors in which an aerobic headspace was maintained suggesting that aerobes play a role in establishing conditions that are most conducive to TNT reduction.  相似文献   

15.
Bioremediation of hydrocarbon (HC) contaminated soils is most effective in aerobic conditions. Despite the fact that mass transfer of oxygen is an important process parameter, the effect of this parameter on solid-phase bioremediation has received limited attention. In this study, the combined effect of temperature and aeration on the bioremediation of low organic content coarse-grained soils, freshly contaminated with diesel, was investigated in solid-phase bench-scale bioreactors. Total HC and carbon range soil concentrations, volatilization, and microbial activity were monitored throughout the six-month experiments at two temperatures (7 and 22°C) and at two aeration rates (13 and 45 mL·s?1). Total HC removal reached between 48 and 83%. Generally, removal increased proportionally with temperature and aeration rates, and decreased proportionally with HC compounds molecular weight. Both biodegradation and volatilization played important roles in removal in all treatments. The high aeration rate enhanced microbial activity in soil. Enhancement was believed to be due to increased mass transfer of oxygen from the soil gas to the soil solution, where microbial activity occurs. However, high aeration also enhanced volatilization, especially at 22°C where 51% of HCs were lost to volatilization. High aeration rate enhanced biodegradation of compounds > nC15 without promoting their excessive volatilization.  相似文献   

16.
1,2-dibromoethane (DBE) is a common environmental contaminant; it is potentially carcinogenic and has been detected in soil and groundwater supplies. Most of the biodegradation studies to date have been performed under anaerobic conditions or in the context of soil remediation, where the pollutant concentration was in the parts per billion range. In this work a mixed bacterial culture capable of complete aerobic mineralization of concentrations of DBE up to 1 g liter(-1) under well-controlled laboratory conditions was enriched. In order to verify biodegradation, formation of biodegradation products as well as the disappearance of DBE from the biological medium were measured. Complete mineralization was verified by measuring stoichiometric release of the biodegradation products. This mixed culture was found to be capable of degrading other halogenated compounds, including bromoethanol, the degradation of which has not been reported previously.  相似文献   

17.
The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and the bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and on-site bioremediation of contaminated soils and determine the attainable treatment end-points. Two kinds of compounds have been studied: (1) phenol and alkyl phenols, which represent hydrophilic compounds, exhibiting high water solubility and moderate to low soil partitioning; and (2) polycyclic aromatic hydrocarbons which are hydrophobic compounds with low water solubility and exhibit significant partitioning in soil organic carbon. Representative data are given for phenol and naphthalene. The results provide support for a systematic multi-level protocol using soil slurry, wafer and porous tube or column reactors to determine the biokinetic parameters for toxic organic pollutants. Insights into bioremediation rates of soil contaminants in compact soil systems can be attained using the protocol. Received 04 December 1995/ Accepted in revised form 31 January 1997  相似文献   

18.
Periodic perturbations were used to evaluate the system stability and robustness of naphthalene biodegradation in a continuous flow stirred tank reactor (CSTR) containing a soil slurry. The experimental design involved perturbing the test system using a sinusoidal input either of naphthalene or non-naphthalene organic carbon at different frequencies during steady state operation of the reactors. The response of the test system was determined by using time series off-gas analysis for naphthalene liquid phase concentration and degradation, total viable cell counts, and gene probe analysis of naphthalene degradative genotype, and by batch mineralization assays.Naphthalene biodegradation rates were very high throughout the experimental run (95 to >99% removed) resulting in very low or undetectable levels of naphthalene in the off-gas and reactor effluent. Attempts to reduce the rate of naphthalene biotransformation by either reducing the reactor temperature from 20°C to 10°C or the dissolved oxygen level (>1 mg/L) were unsuccessful. Significant naphthalene biodegradation was observed at 4°C. While variable, the microbial community as measured by population densities was not significantly affected by temperature changes. In terms of naphthalene biotransformation, the system was able to adapt readily to all perturbations in the reactor.Department of Chemical EngineeringDepartment of Microbiology and The Graduate Program in EcologyDepartment of Civil Engineering, New Orleans University  相似文献   

19.
Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.  相似文献   

20.
Addition of toluene into slurry phase laboratory microcosm is proposed in order to increase desorption rate of hydrocarbons and as an alternative to improve bioavailability of hydrocarbon in aged soils. Our studies showed that toluene has a positive effect on desorption of total petroleum hydrocarbons (TPH). Addition of 14,000 mg toluene/kg of soil, in highly polluted soil, increased the consumption rate of hydrocarbons three times in comparison to control without solvent. In 30 days the initial TPH concentration in soil, 292,000 mg/kg, diminished 45%. Although toluene was able to dissolve complex organic compounds such as asphaltene fraction, it probably yielded a highly toxic toluene-hydrocarbons phase. The inhibitory effect of toluene-TPH was also studied. A substrate inhibition model was used: the k(m) and k(i) constants were 57 and 490 mg TPH/L liquid phase, respectively. Experimental data were well described when the proposed model included sequential desorption and biodegradation phenomena. Damk?hler number evaluation showed that rate of mass transfer was the limiting step in overall biodegradation in nonsolvent control. When high concentration of toluene was added, then bioreaction was the limiting step, but inhibitory effect should be considered. However, toluene addition at low concentrations facilitates the biodegradation of aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号