首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of whole-body inhalation exposure of F0 and F1 parental animals from a 2-generation reproduction study of ethylbenzene on nervous system functional and/or morphologic end points in the F2 offspring from four groups of male and female Crl:CD (SD)IGS BR rats. METHODS: Thirty rats/sex/group for F0 and 25/sex/group for F1 were exposed to 0, 25, 100, and 500 ppm ethylbenzene for six hours daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through Gestation Day (GD) 20. On lactation days (LD) 1-4, the F0 and F1 females received no inhalation exposure, but instead were administered ethylbenzene in corn oil via oral gavage at dosages estimated to result in similar internal maternal exposure based upon PBPK modeling estimates (0, 26, 90, and 342 mg/kg/day, respectively, divided into three equal doses, approximately two hours apart). Inhalation exposure of the F0 and F1 females was reinitiated on LD 5 and continued through weaning on postnatal day (PND) 21. Survival, body weights, and physical landmarks were assessed in selected F2 offspring. Neurobehavioral development of one F2-generation treatment derived offspring/sex/litter was assessed in a functional observational battery (FOB; PND 4, 11, 22, 45, and 60), motor activity sessions (PND 13, 17, 21, and 61), acoustic startle testing (PND 20 and 60), a Biel water maze learning and memory task (initiated on PND 26 or 62), and in evaluations of whole-brain measurements and brain morphometric and histologic assessments (PND 21 and 72). RESULTS: There were no adverse effects on reproductive performance in either the F0 or F1 parental generations exposed to up to 500 ppm ethylbenzene [Faber et al. Birth Defects Res Part B 77:10-21, 2006]. In the current developmental neurotoxicity component, parental ethylbenzene exposure did not adversely affect offspring survival, clinical condition, body weight parameters, or acquisition of developmental landmarks of the F2-generation treatment derived offspring. There were no alterations in FOB parameters, motor activity counts, acoustic startle endpoints, or Biel water maze performance in offspring attributed to parental ethylbenzene exposure. A few isolated instances of statistically significant differences obtained in the treatment-derived groups occurred sporadically, and were attributed to unusual patterns of development and/or behavior in the concurrent control group. There were no exposure-related differences in any neuropathology parameters in the F2-generation treatment derived offspring. CONCLUSIONS: The no observed adverse effect level (NOAEL) for maternal reproductive toxicity, developmental toxicity, and developmental neurotoxicity in this study was considered to be 500 ppm/342 mg/kg/day ethylbenzene, the highest exposure level tested in the study.  相似文献   

2.
Diethylstilbestrol (DES) treatment of female rats on postnatal days (PND) 1-5 reduces uterine growth, estrogen receptor (ER) level and gland number by PND 25, while daily DES treatment on PND 1-25 increases uterine growth 4-fold, further reduces ER level and completely suppresses gland formation. We now report the persistence of these effects in adults. By PND 60, uterine weight was 70% of controls in rats injected with DES on PND 1-5 but only 10% of controls in rats injected PND 1-10 or longer. In fact, uterine weights were the same on PND 10 and 60. Uterine gland numbers were reduced to 30% of controls in all DES-treated rats regardless of exposure length; however, luminal and glandular epithelial cell heights were reduced to less than 50 and 70%, respectively, of controls when DES was given on PND 1-25 but not when given on PND 1-5. Ovariectomy 7 days prior to sacrifice on PND 60 reduced uterine weight in controls by 67% and in rats injected with DES on PND 1-5 by 53%, but had no effect in rats injected with DES on PND 1-10. DES exposure at either PND 1-5 or 1-10 lowered ER levels by 35-50% at both 60 and 90 days. Treatment with a high dose of estradiol (E2) 1 week before sacrifice significantly down-regulated ER to the same concentration in all treatment groups at PND 60 and 90. Following E2 treatment, all groups also showed increased uterine weight at PND 60 and 90. These data show there is a short period of development (PND 5-10) in which further DES exposure indirectly inhibits uterine growth.  相似文献   

3.
This study was conducted to assess potential adverse functional and/or morphological effects of styrene on the neurological system in the F2 offspring following F0 and F1 generation whole-body inhalation exposures. Four groups of male and female Crl:CD (SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure continued for the F0 and F1 females throughout mating and through gestation day 20. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5 and continued through weaning of the F1 or F2 pups on postnatal day (PND) 21. Developmental landmarks were assessed in F1 and F2 offspring. The neurological development of randomly selected pups from the F2 generation was assessed by functional observational battery, locomotor activity, acoustic startle response, learning and memory evaluations, brain weights and dimension measurements, and brain morphometric and histologic evaluation. Styrene exposure did not affect survival or the clinical condition of the animals. As expected from previous studies, slight body weight and histopathologic effects on the nasal olfactory epithelium were found in F0 and F1 rats exposed to 500 ppm and, to a lesser extent, 150 ppm. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. There were exposure-related reductions in mean body weights of the F1 and F2 offspring from the mid and high-exposure groups and an overall pattern of slightly delayed development evident in the F2 offspring only from the 500-ppm group. This developmental delay included reduced body weight (which continued through day 70) and slightly delayed acquisition of some physical landmarks of development. Styrene exposure of the F0 and F1 animals had no effect on survival, the clinical condition or necropsy findings of the F2 animals. Functional observational battery evaluations conducted for all F1 dams during the gestation and lactation periods and for the F2 offspring were unaffected by styrene exposure. Swimming ability as determined by straight channel escape times measured on PND 24 were increased, and reduced grip strength values were evident for both sexes on PND 45 and 60 in the 500-ppm group compared to controls. There were no other parental exposure-related findings in the F2 pre-weaning and post-weaning functional observational battery assessments, the PND 20 and PND 60 auditory startle habituation parameters, in endpoints of learning and memory performance (escape times and errors) in the Biel water maze task at either testing age, or in activity levels measured on PND 61 in the 500-ppm group. Taken together, the exposure-related developmental and neuromotor changes identified in F2 pups from dams exposed to 500 ppm occurred in endpoints known to be both age- and weight-sensitive parameters, and were observed in the absence of any other remarkable indicators of neurobehavioral toxicity. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for growth of F2 offspring; an exposure level of 500 ppm was considered to be the NOAEL for F2 developmental neurotoxicity.  相似文献   

4.
The effect of hyperoxia alone and in combination with inhaled nitric oxide (NO) on the integrity of lung mitochondrial DNA (mtDNA) in vivo was evaluated in Fischer 344 rats. PCR amplification of lung mtDNA using two sets of primers spanning 10.1 kb of the mtDNA revealed that inhalation of 20 ppm of NO in conjunction with hyperoxia (>95% O2) reduced the amplification of mtDNA templates by 10 +/- 1% and 26 +/- 3% after 24 h of exposure. The ability of mtDNA to amplify was not compromised in rats exposed to 80% O2, even in the presence of 20 ppm of inhaled NO. Surprisingly, exposure to >95% O2 alone for either 24 or 48 h did not compromise the integrity of mtDNA templates compared with air-exposed controls, despite evidence of genomic DNA injury. Interestingly, inhaling NO alone for 48 h increased mtDNA amplification by 12 +/- 2% to 21 +/- 7%. Injury to the lung mtDNA after exposure to >95% O2 plus 20 ppm of NO was transient as rats allowed to recover in room air after exposure displayed increased amplification, with levels exceeding controls by 20 +/- 3% to 29 +/- 4%. Increased amplification was not due to cellular proliferation or increased mitochondrial number. Moreover, the ratio of pulmonary mtDNA to genomic DNA remained the same between treatment groups. The results indicate that hyperoxia fails to induce significant injury to mtDNA, and whereas inhalation of NO with hyperoxia results in mtDNA damage, the lesions are rapidly repaired during recovery.  相似文献   

5.
We hypothesized that in utero and lactational exposure of male rats to a mixture of more than 15 organochlorines, resembling that found in blubber from northern Quebec seals, alters reproductive development and function. Female rats were gavaged with either corn oil (controls) or the organochlorine mixture in increasing doses (low, medium, and high) for 5 wk before mating and through gestation. Developmental effects were monitored in the male offspring from Postnatal Day (PND) 2 until PND 90. The high-dose mixture reduced the number of pups per litter, percentage of live offspring, and pup weights (P < 0.05). Because only three rats from the high-dose treatment survived, data from this group beyond PND 2 were not included in the statistical analyses. As assessed by the time of preputial separation, puberty was delayed in the pups from treated dams (P < 0.05). Testes weights in the medium-dose group were greater than those in controls on PND 21 (P < 0.05). Ventral prostate weights were lower for the medium-dose group on PND 60 (P < 0.05). On PND 90, weights of the epididymis, ventral prostate, and seminal vesicle of the medium-dose rats were reduced compared to those of controls (P < 0.05). On PND 90, sperm motility parameters assessed by computer-assisted sperm analysis were altered in the low- and medium-dose groups (P < 0.05). Testicular and epididymal morphology was severely affected in rats exposed to the high dose of the mixture. Serum testosterone, LH, FSH, prolactin, and total thyroxine levels did not differ because of organochlorine treatment. Therefore, in utero and lactational exposure to an environmentally relevant organochlorine mixture adversely affects the reproductive system of male rats, perhaps via antiandrogenic effects during testis development, suggesting a possible reproductive health hazard for humans and other species.  相似文献   

6.
If neurotransmitter balance is upset in the developing nervous system by exposure to antidepressant drugs, structural and functional hedonic phenotypes of offspring may be affected. In order to test this hypothesis, two groups of pregnant Wistar dams were exposed to vehicle or fluoxetine by implantation on gestational day 14 of osmotic minipumps delivering 0 or 10 mg/kg/day fluoxetine for 14 days. The consequences of perinatal fluoxetine exposure on offspring conflict-exploratory behavior were quantified using the elevated plus-maze on postnatal day (PND) 30. Beginning on PND 60, the reinforcing properties of acutely administered cocaine were examined using a place conditioning procedure. Beginning on PND 90, a subset of rats were implanted with jugular catheters and allowed to acquire self-administration of cocaine in an operant environment. In support of the hedonic modulation hypothesis, perinatal fluoxetine produced a significant decline in both nucleus accumbens cell count (-9%) and serotonin transporter-like immunoreactivity in the raphe nucleus (-35%) on PND 120. In the elevated plus-maze, perinatal fluoxetine exposure decreased (-21%) overall activity. In the place conditioning trial, only the fluoxetine-treated group exhibited a significant place preference for the compartment paired previously with cocaine. In a cocaine self-administration extinction trial, there was a statistically significant increase (350%) in extinction response rate among fluoxetine-exposed offspring. These findings suggest that perinatal exposure to fluoxetine perturbs adult serotonergic neurotransmission and produces a positive hedonic shift for conditioned reinforcing effects of cocaine.  相似文献   

7.
BACKGROUND: Gestational exposure to di-n-butyl phthalate (DBP), a ubiquitous environmental contaminant, has been shown to interfere with the development of the male reproductive tract by acting as an antiandrogen. This study was conducted to identify the critical days for the abnormal development of the male reproductive tract, specifically the testis and epididymis. METHODS: Timed-pregnant Sprague-Dawley rats were dosed with DBP at 500 mg/kg/day on gestation day (GD) 14 and 15, 15 and 16, 16 and 17, 17 and 18, 18 and 19, or 19 and 20 (GD 0=plug day). Anogenital distance (AGD) was measured on postnatal day (PND) 1 and 13, while areloa number was recorded on PND 13 only. After weaning, males were allowed to mature to PND 90 at which time they were necropsied. Areloa number and AGD were recorded and testes, epididymides, seminal vesicles, prostate gland, kidneys, and liver weighed. Blood serum was collected and assayed for total testosterone concentration. RESULTS: There were no observable effects on litter size, sex ratio, serum testosterone concentration, or mortality of pups. Statistically significant permanent reductions in AGD were seen in males exposed prenatally to DBP on GD 15 and 16 or GD 18 and 19. On PND 13, areola were present in males exposed to DBP on GD 15 and 16, 16 and 17, 17 and 18, and 19 and 20. However, permanent retention occurred only in males after DBP exposure on GD 16 and 17. Exposure to DBP on only GD 17 and 18 elicited a reduction in epididymal weights; while exposure on only GD 16 and 17 caused a significant increase in the weights of the testes due to edema. In this study, epididymal and testicular malformations were most prevalent after exposure to DBP on any gestational day. Epididymal malformations, characterized by agenesis of various regions and small or flaccid testes were significantly increased in DBP-exposed males only on GD 16 and 17. CONCLUSIONS: These findings suggest that 2-day DBP exposure is highly detrimental to the developing reproductive tract of the male fetus and the critical window for abnormal development is GD 16-18.  相似文献   

8.
Exposure of immature lungs to hyperoxia for prolonged periods contributes to neonatal lung injury and airway hyperreactivity. We studied the role of disrupted nitric oxide-guanosine 3',5'-cyclic monophosphate (NO-cGMP) signaling in impairing the relaxant responses of lung tissue from hyperoxia-exposed rat pups. Pups were exposed to >/=95% O(2) or room air for 7 days starting from days 1, 5, or 14. The animals were killed, lungs were removed, and 1-mm-thick lung parenchymal strips were prepared. Lung parenchymal strips of room air or hyperoxic pups were preconstricted using bethanechol and then graded electrical field stimulation (EFS) was applied to induce relaxation. EFS-induced relaxation of lung parenchymal strips was greater at 7 and 12 days than at 21 days in room air-exposed rat pups. Hyperoxic exposure significantly reduced relaxation at 7 and 12 days but not 21 days compared with room air exposure. NO synthase blockade with N(omega)-nitro-l-arginine methyl ester diminished relaxant responses in room air but not in hyperoxic pups at 12 days. After incubation with supplemental l-arginine, the relaxation response of hyperoxic strips was restored. cGMP, a key mediator of the NO signaling pathway, also decreased in strips from hyperoxic vs. room air pups and cGMP levels were restored after incubation with supplemental l-arginine. In addition, arginase activity was significantly increased in hyperoxic lung parenchymal strips compared with room air lung parenchymal strips. These data demonstrate disruption of NO-cGMP signaling in neonatal rat pups exposed to hyperoxia and show that bioavailability of the substrate l-arginine is implicated in the predisposition of this model to airway hyperreactivity.  相似文献   

9.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of ethylbenzene (EB) on reproductive capability from whole-body inhalation exposure of F0 and F1 parental animals. METHODS: Four groups of Crl:CD(SD)IGS BR rats (30/sex/group for F0 and 25/sex/group for F1) were exposed to 0, 25, 100, and 500 ppm EB for 6 hr/day for at least 70 consecutive days before mating. Inhalation exposure for the F0 and F1 females continued throughout mating, gestation through gestation day (GD) 20, and lactation days (LD) 5-21. On LD 1-4, females received EB in corn oil via oral gavage at dose levels of 26, 90, and 342 mg/kg/day (divided into three equal doses, approximately 2 hr apart), as calculated from a physiologically-based pharmacokinetic (PBPK) model to provide similar maternal blood area-under-concentration (AUC) as provided by inhalation. Pups were weaned on postnatal day (PND) 21 and exposure of the F1 generation started on PND 22. Estimates of internal exposure were determined by measuring EB concentrations in blood collected from F1 dams (4/group) and their culled pups 1 hr after the last gavage dose on PND 4. On PND 22, blood was collected from these same F1 dams and their weanlings for EB analysis 1 hr after a 6-hr inhalation exposure. The remainder of the F2 generation was not directly exposed. RESULTS: EB exposure did not affect survival or clinical observations. Male rats in the 500 ppm group in both generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, ovarian follicle counts, reproductive organ weights, lengths of estrous cycle and gestation, live litter size, pup weights, developmental landmarks, and postnatal survival were unaffected. No adverse exposure-related macroscopic pathology was noted at any level. CONCLUSIONS: Increased liver weights were found in the animals exposed to 500 ppm. F1 maternal whole blood EB concentrations of 0.49, 3.51, or 18.28 mg/L were found 1 hr after administration of a composite oral dose of 26, 90, or 342 mg/kg/day, respectively, but no detectable EB was found in blood samples of their F2 PND 4 culled pups. F1 maternal mean whole blood EB levels 1 hr after a 6-hr inhalation exposure on postpartum day (PPD) 22 was 0.11 mg/L (25 ppm), 0.56 mg/L (100 ppm), and 11 mg/L (500 ppm). For the offspring exposed with their dams on PND 22, F2 pup blood EB concentrations ranged from 0.017-0.039 mg/L (25 ppm), 0.165-0.465 mg/L (100 ppm), and 8.82-15.74 mg/L (500 ppm). Because decreased weight gain in the 500 ppm males was transient and no histopathological changes were associated with the increased liver weights in the 500 ppm male and female groups, these changes were not considered adverse. Therefore, for parental systemic toxicity, 100 ppm was considered a NOEL and 500 ppm a NOAEL in this study. The 500 ppm exposure concentration was considered a NOAEL for F0 and F1 reproductive toxicity and offspring developmental endpoints.  相似文献   

10.
Bovine pulmonary artery endothelial cells in culture were exposed for up to 7 d to a gas mixture containing 80% O2, 5% CO2, and 15% N2 (hyperoxia) and were compared by phase contrast and electron microscopy to cells exposed to a gas mixture containing 20% O2, 5% CO2, and 75% N2. Cells exposed to hyperoxia became enlarged and showed vacuolization and increased lysosomes within 24 to 48 h. These changes were progressive over the 7 d period of exposure. Between 3 and 7 d of exposure to hyperoxia the cells showed reductions in polysomes and endoplasmic reticulum. Despite the other marked cytoplasmic changes, the appearance of mitochondria of oxygen-exposed cells remained unchanged from those of air-exposed cells throughout the 7 d period. Preconfluent and confluent cells responded qualitatively similarly to hyperoxia, but morphological evidence of injury occurred more rapidly for preconfluent cells. We conclude that the initial early structural injury of the endothelial cell exposed to hyperoxia occurs in lysosomes and that the mitochondrial structure is relatively resistant to injury.  相似文献   

11.
目的:研究正常雌性Sprague-Dawle(SD)大鼠不同性发育阶段及雌激素诱导性早熟后下丘脑Lin28a和Lin28b的表达及意义。方法:1)于雌性SD大鼠出生后15日(postnatal day 15,PND15)、PND23、PND35荧光实时定量PCR分析下丘脑Lin28a和Lin28b mRNA的表达,同时以ELISA法检测血清黄体生成素(LH)和雌二醇(E2)水平变化;2)苯甲酸雌二醇(estradiol benzoate,EB)诱导的性早熟大鼠随机分为EB-1组和EB-2组,分别于阴道开口(vaginal opening,VO)时及PND56两个时间点处死,相应的发育阶段的大鼠用无菌芝麻油(sesame oil,OIL)作为对照分为OIL-1和OIL-2组;荧光实时定量PCR分析下丘脑Lin28a和Lin28b mRNA的表达,ELISA法检测LH和E2水平变化,并观察性早熟对大鼠阴道开口、体重、顶臀径、胫骨长等生长发育指标的影响。结果:1)PND15、PND23和PND35组下丘脑Lin28a和Lin28b mRNA表达、血清LH和E2水平无统计学差异(P〉0.05);2)EB-1组下丘脑Lin28a和Lin28b mRNA表达高于OIL-1组(P〈0.05),血清LH和E2水平与OIL-1组相比无统计学差异(P〉0.05);EB-2组下丘脑Lin28a和Lin28b mRNA表达高于OIL-2组(P〈0.05),血清LH和E2水平低于OIL-2组(P〈0.05);3)与OIL-2组比较,EB-2组VO时间明显提前(P〈0.01),体重、顶臀长、胫骨长差异无统计学差异(P〉0.05)。结论:外源性雌激素引起的性早熟可能导致下丘脑Lin28a和Lin28b表达异常。  相似文献   

12.
Exposure of the newborn lung to hyperoxia is associated with impaired alveolar development. In newborn rats exposed to hyperoxia and studied at day 14 of life, retinoic acid (RA) treatment improved survival and increased lung collagen but did not improve alveolar development. To determine whether RA treatment during exposure to hyperoxia results in late improvement in alveolarization, we treated newborn rats with RA and hyperoxia from day 3 to day 14 and then weaned O2 to room air by day 20, and studied the animals on day 42. O2-exposed animals had larger mean lung volumes, larger alveoli, and decreased gas-exchange tissue relative to air-exposed animals, whereas RA-treated O2-exposed animals were not statistically different from air-exposed controls. Relative to control animals, elastin staining at day 14 was decreased in hyperoxia-exposed lung independent of RA treatment, and, at day 42, elastin staining was similar in all treatment groups. At day 14, elastin gene expression was similar in all treatment groups, whereas at day 42 lung previously exposed to hyperoxia showed increased elastin signal independent of RA treatment. These results indicate that RA treatment during hyperoxia exposure promotes septal formation without evidence of effects on elastin gene expression after 4 wk of recovery.  相似文献   

13.
To characterize developmental and behavioral alterations induced by arsenic exposure, Albino rats were exposed to arsenic (0, 1.5, 3.0 and 4.5 mg/kg/day/po) from gestation day 8 to till parturition and the offspring were observed over the first 3 postnatal weeks, until they were weaned on post-natal day (PND) 21. Once the pups were delivered (PND0), the treatment was discontinued. All pups were assessed for physical development, reflex development, strength and motor coordination from standard neurobehavioural developmental test batteries beginning on PND1. Gestational administration of arsenic at tested dose levels, showed no significant changes in the day of appearance of eye opening, startle reflex, negative geotaxis and spontaneous alteration performance in comparison to the control group. The number of live fetuses, mean fetal body weight and percentages of resorptions or malformations per litter were not affected by arsenic exposure. No treatment-related malformations or developmental variations were noted at any exposure level, suggesting that arsenic exposure at this dose level did not adversely affect behavioural endpoints of developmental toxicity.  相似文献   

14.
The critical period for increased neonatal mortality induced by perfluorooctane sulfonate (PFOS) exposure was evaluated in the rat. Timed-pregnant Sprague-Dawley rats were treated by oral gavage with 25 mg/kg/d PFOS/K(+) on four consecutive days (gestation days (GD) 2-5, 6-9, 10-13, 14-17, or 17-20) or with 0, 25, or 50 mg/kg/d PFOS/K(+) on GD 19-20. Controls received vehicle (10 ml/kg 0.5% Tween-20) on these days. Maternal weight gain was reduced in treated animals during dosing, as were food and water consumption. Following a 4-day treatment, litter size at birth was unaffected while pup weight was similarly reduced in the three earliest PFOS groups. All PFOS groups experienced decreases in survival while controls remained near 100%. Neonatal survival decreased in groups dosed later during gestation, approaching 100% with dosing on GD 17-20. Most deaths occurred before postnatal day (PND) 4, with the majority in the first 24 hours. Maternal serum PFOS levels on GD 21 were higher in groups exhibiting higher mortality. Following a 2-day treatment, PFOS groups experienced significant pup mortality by PND 1. Neonatal mortality continued through PND 5, when survival was 98, 66, and 3% for the 0, 25, and 50 mg/kg groups, respectively. Pup weight was reduced in treated groups with surviving litters. Gross dissection and histological examination of lungs revealed differences in maturation between control and treated animals on PND 0. We conclude that exposure to PFOS late in gestation is sufficient to induce 100% pup mortality and that inhibition of lung maturation may be involved.  相似文献   

15.
Signaling through the hypoxia inducible factor (HIF)-VEGF-VEGF receptor system (VEGF signaling system) leads to angiogenesis and epithelial cell proliferation and is a key mechanism regulating alveolarization in lungs of newborn rats. Hyperoxia exposure (>95% O2 days 4-14) arrests lung alveolarization and may do so through suppression of the VEGF signaling system. Lung tissue mRNA levels of HIF-2alpha and VEGF increased from days 4-14 in normoxic animals, but hyperoxia suppressed these increases. Levels of HIF-2alpha and VEGF mRNA were correlated in the air but not the O2-treated group, suggesting that the low levels of HIF-2alpha observed at high O2 concentrations are not stimulating VEGF expression. VEGF164 protein levels increased with developmental age, and with hyperoxia to day 9, but continuing hyperoxia decreased levels by day 12. VEGFR1 and VEGFR2 mRNA expression also increased in air-exposed animals, and these, too, were significantly decreased by hyperoxia by day 9 and day 12, respectively. Receptor protein levels did not increase with development; however, O2 did decrease protein to less than air values. Hyperoxic suppression of VEGF signaling from days 9-14 may be one mechanism by which alveolarization is arrested.  相似文献   

16.
将50只同期怀孕的大鼠分为5组,在怀孕第7—18d,每天给两组大鼠腹腔分别注射1和20mg/kg体重2,2’,4,4’-四氯联苯(PCB47);给另两组分别注射0.25和1mg/kg体重3,3’,4,4’-四氯联苯(PCB77);对照组注射0.1mL芝麻油。幼鼠出生时记录每窝产仔数和性比;出生后每隔7d称体重直到第119d;出生后第15天时检查幼鼠的睁眼率。与对照组相比,PCB47和PCB77所有剂量组每窝产仔数和性比无显著差异;PCB47(20g/kg体重组)和PCB77(两个剂量组)雌幼鼠肛门一生殖孔距离显著增加,出生后15d幼鼠的睁眼率显著降低;PCB77(1mg/kg体重组)雄幼鼠从出生后第35至119天体重显著降低。提示PCB77主要影响雄鼠的生长发育。  相似文献   

17.
To determine the respective role of thymidine kinase and thymidylate synthase activities in the hyperoxia-induced decrease in DNA synthesis and their relationship with cell replication, we measured these two enzyme activities in primary cultures of porcine aortic endothelial cells under different O2 concentrations for various durations. In confluent cells, exposure to 95% O2 for 5 days reduced thymidine kinase activity to 15% of control values; thymidylate synthase activity was unaffected. In preconfluent cells exposed to 95% O2 for 2 days, similar results were obtained, together with evidence for arrest in cell proliferation. Thymidylate synthase activity could therefore not be related to decreased cell proliferation under hyperoxia. [3H]thymidine incorporation into DNA, thymidine kinase activity, and cell proliferation were all similarly affected under exposure to graded O2 concentration for 2 days. Thymidine kinase appears to be a key enzyme in the modulation of DNA synthesis from thymidine and in its replication in endothelial cells.  相似文献   

18.
2,3,7,8-tetrachlorododibenzo-p-dioxin (TCDD) is a highly persistent trace environmental contaminant and is one of the most potent toxicants known. Exposure to TCDD has been shown to cause oxidative stress in a variety of animal models. In this study, pregnant Long Evans rats were dosed with 1 microg TCDD/kg on gestational day (GD) 15 so as to investigate oxidative stress in the liver of male pups following gestational exposure to TCDD. Lipid peroxidation (TBARS), production of reactive oxygen species (ROS), and total glutathione (GSH) were assayed to identify changes in oxidative stress parameters in the pup liver at GD 21 and postnatal days (PND) 4, 25, 32, 49, and 63. Mean ROS levels in pups were elevated at all time points tested with a significant elevation at PND 4 and PND 25. However, pup hepatic lipid peroxidation was unchanged throughout the time course. In addition, hepatic total GSH levels were not significantly changed although the means for the TCDD-treated groups were less than those of the controls at all time points except PND 49. The results indicate that although the levels of ROS are increased following gestational/lactational exposure, this increase does not translate to direct oxidative damage or significant changes to endogenous antioxidant defense mechanisms. Further investigation into the effect of gestational/lactational exposure in pups should include additional endpoints for further characterization of the time course of the response, the effect upon extrahepatic tissues, and investigation of differences between male and female offspring.  相似文献   

19.
Adult male rats were exposed or sham-exposed to 60-Hz electric fields without spark discharges, ozone, or significant levels of other secondary variables. No effects were observed on body weights or plasma hormone levels after 30 days of exposure at an effective field strength of 68 kV/m. After 120 days of exposure (effective field strength = 64 kV/m), effects were inconsistent, with significant reductions in body weight and plasma levels of follicle-stimulating hormone and corticosterone occurring in one replicate experiment but not in the other. Plasma testosterone levels were significantly reduced after 120 days of exposure in one experiment, with a similar but not statistically significant reduction in a replicate experiment. Weanling rats, exposed or sham-exposed in electric fields with an effective field strength of 80 kV/m from 20 to 56 days of age, exhibited identical or closely similar growth trends in body and organ weights. Hormone levels in exposed and sham-exposed groups were also similar. However, there was an apparent phase shift between the two groups in the cyclic variations of concentrations of hormones at different stages of development, particularly with respect to follicle-stimulating hormone and corticosterone. We concluded that 60-Hz electric fields may bring about subtle changes in the endocrine system of rats, and that these changes may be related to alterations in episodic rhythms.  相似文献   

20.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of di-2-ethylhexyl terephthalate (DEHT) on reproductive capability from exposure of F(0) and F(1) parental animals. METHODS: Four groups of male and female Crl:CD (SD)IGS BR rats (30/gender/group) were exposed to 0, 0.3%, 0.6%, and 1.0% DEHT in the feed for at least 70 consecutive days before mating for the F(0) and F(1) generations. Exposure for the F(0) and F(1) males continued throughout the mating period until euthanasia. Exposure for the F(0) and F(1) females continued throughout mating, gestation, and lactation. The F(1) and F(2) pups were weaned on postnatal day (PND) 21. Assessments included gonadal function, estrous cyclicity, mating behavior, conception rate, gestation, parturition, lactation, and weaning in the F(0) and F(1) generations, and F(1) generation offspring growth and development. RESULTS: DEHT exposure did not affect clinical observations. However, lethality was observed in F(0) and F(1) dams consuming the 1.0% diet during the post-weaning period. No treatment-related mortality occurred in any of the male groups exposed to DEHT or in the female groups exposed to 0.3% or 0.6% DEHT. Male rats consuming the 1.0% diet in both parental generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either the F(0) or F(1) generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, reproductive organ weights, lengths of estrous cycle and gestation, live litter size, developmental landmarks, and postnatal survival were similar in all exposure groups. Additionally, ovarian follicle counts for the F(1) females in the high-exposure group were similar to the control values. No adverse exposure-related macroscopic pathology was noted at any exposure level in the F(0) and F(1) generations. CONCLUSIONS: Increases in liver weights were found in the male and female animals exposed to 0.6% or 1.0% DEHT in the diet. Because there were no accompanying histopathologic changes, this effect was not considered adverse. Significant decreases in feed consumption in the female animals from the groups consuming 1.0% DEHT in the diet during lactation accompanied reduced postnatal pup body weights and rate of weight gain. Reductions in pup body weights later in lactation may also have been due to direct consumption of the treated feed by the pups or taste aversion to the same. Reduced relative spleen weight was found in male weanling pups from the 1.0% group in both generations and reduced relative spleen and thymus weights were found in female pups from the 1.0% group in the F(2) generation at necropsy on PND 21. Therefore, for parental and pup systemic toxicity, 0.3% DEHT in the diet (182 mg/kg/day) was considered no-observed-effect level (NOEL). The 1.0% DEHT (614 mg/kg/day) in the diet exposure concentration was considered a NOEL for F(0) and F(1) reproductive toxicity endpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号