首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two acetyl esterases (EC 3.1.1.6) were purified to gel electrophoretic homogeneity from Thermoanaerobacterium sp. strain JW/SL-YS485, an anaerobic, thermophilic endospore former which is able to utilize various substituted xylans for growth. Both enzymes released acetic acid from chemically acetylated larch xylan. Acetyl xylan esterases I and II had molecular masses of 195 and 106 kDa, respectively, with subunits of 32 kDa (esterase I) and 26 kDa (esterase II). The isoelectric points were 4.2 and 4.3, respectively. As determined by a 2-min assay with 4-methylumbelliferyl acetate as the substrate, the optimal activity of acetyl xylan esterases I and II occurred at pH 7.0 and 80 degrees C and at pH 7.5 and 84 degrees C, respectively. Km values of 0.45 and 0.52 mM 4-methylumbelliferyl acetate were observed for acetyl xylan esterases I and II, respectively. At pH 7.0, the temperatures for the 1-h half-lives for acetyl xylan esterases I and II were 75 degrees and slightly above 100 degrees C, respectively.  相似文献   

2.
A cephalosporin deacetylating acetyl xylan esterase was cloned from the genomic DNA of Bacillus subtilis CICC 20034 and functionally expressed in Escherichia coli. Its gene contained an open reading frame of 957 bp encoding 318 amino acids with a calculated mass of 35,607 Da, and it displayed significant identity to acetyl xylan esterases from Bacillus sp. 916, B. subtilis 168, and Bacillus pumilus Cect5072. The enzyme was a native homohexamer but a trimer under the condition of 1 % sodium dodecyl sulfate (SDS); both forms were active and could transit to each other by incubating in or removing SDS. The enzyme belongs to carbohydrate esterase family 7 and had a double specificity on both the acetylated oligosaccharide and cephalosporin C (CPC) and 7-aminocephalosporanic acid (7-ACA). The activity of this purified enzyme toward CPC and 7-ACA was highest among all the acetyl xylan esterase from CE family 7, which were 484 and 888 U/mg, respectively, and endowed itself with great industrial interest on semi-synthetic β-lactam antibiotics. The optimum pH of the purified enzyme was 8.0, and the optimum temperature was 50 °C, and the enzyme had high thermal stability, broad range of pH tolerance, and extremely organic solvent tolerance.  相似文献   

3.
An esterase which is encoded within a Thermotoga maritima chromosomal gene cluster for xylan degradation and utilization was characterized after heterologous expression of the corresponding gene in Escherichia coli and purification of the enzyme. The enzyme, designated AxeA, shares amino acid sequence similarity and its broad substrate specificity with the acetyl xylan esterase from Bacillus pumilus, the cephalosporin C deacetylase from Bacillus subtilis, and other (putative) esterases, allowing its classification as a member of carbohydrate esterase family 7. The recombinant enzyme displayed activity with p-nitrophenyl-acetate as well as with various acetylated sugar substrates such as glucose penta-acetate, acetylated oat spelts xylan and DMSO (dimethyl sulfoxide)-extracted beechwood xylan, and with cephalosporin C. Thermotoga maritima AxeA represents the most thermostable acetyl xylan esterase known to date. In a 10 min assay at its optimum pH of 6.5 the enzyme's activity peaked at 90°C. The inactivation half-life of AxeA at a protein concentration of 0.3 µg µl−1 in the absence of substrate was about 13 h at 98°C and about 67 h at 90°C. Differential scanning calorimetry analysis of the thermal stability of AxeA corroborated its extreme heat resistance. A multi-phasic unfolding behaviour was found, with two apparent exothermic peaks at approximately 100–104°C and 107.5°C. In accordance with the crystal structure, gel filtration analysis at ambient temperature revealed that the enzyme has as a homohexameric oligomerization state, but a dimeric form was also found.  相似文献   

4.
Mass spectrometric analysis was used to compare the roles of two acetyl esterases (AE, carbohydrate esterase family CE16) and three acetyl xylan esterases (AXE, families CE1 and CE5) in deacetylation of natural substrates, neutral (linear) and 4-O-methyl glucuronic acid (MeGlcA) substituted xylooligosaccharides (XOS). AEs were similarly restricted in their action and apparently removed in most cases only one acetyl group from the non-reducing end of XOS, acting as exo-deacetylases. In contrast, AXEs completely deacetylated longer neutral XOS but had difficulties with the shorter ones. Complete deacetylation of neutral XOS was obtained after the combined action of AEs and AXEs. MeGlcA substituents partially restricted the action of both types of esterases and the remaining acidic XOS were mainly substituted with one MeGlcA and one acetyl group, supposedly on the same xylopyranosyl residue. These resisting structures were degraded to great extent only after inclusion of α-glucuronidase, which acted with the esterases in a synergistic manner. When used together with xylan backbone degrading endoxylanase and β-xylosidase, both AE and AXE enhanced the hydrolysis of complex XOS equally.  相似文献   

5.
A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose.  相似文献   

6.
Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated xylo-oligosaccharides and complex non-soluble acetylglucuronoxylan. Both enzymes performed optimally at pH 7.0 and 40 °C.Axe2 has a clear preference for acetylated xylo-oligosaccharides (AcXOS) with a high degree of substitution and Axe3 does not show such preference. Axe3 has a preference for large AcXOS (DP 9-12) when compared to smaller AcXOS (especially DP 4-7) while for Axe2 the size of the oligomer is irrelevant. Even though there is difference in substrate affinity towards acetylated xylooligosaccharides from Eucalyptus wood, the final hydrolysis products are the same for Axe2 and Axe3: xylo-oligosaccharides containing one acetyl group located at the non-reducing xylose residue remain as examined using MALDI-TOF MS, CE-LIF and the application of an endo-xylanase (GH 10).  相似文献   

7.
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a Km of 0.9 mM and a Vmax of 785 μmol min−1 mg−1. It had temperature and pH optima of 30°C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases.  相似文献   

8.
Cell wall hemicelluloses and pectins are O‐acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O‐acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody‐tissue‐specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall‐bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β‐1,4‐endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1‐expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.  相似文献   

9.

Most studies of the mode of action of industrially important endoxylanases have been done on alkali extracted-plant xylan. In just few cases, the native form of the polysaccharide, acetylated xylan, was used as a substrate. In this work action of xylanases belonging to three glycoside hydrolase families, GH10, GH11, and GH30 was investigated on acetylglucuronoxylan directly in hardwood cell walls. Powdered eucalyptus wood was used as xylanase substrate. Enzyme-generated fragments were characterized by TLC, MALDI ToF MS, and NMR spectroscopy. All three xylanases generated from eucalyptus wood powder acetylated xylooligosaccharides. Those released by GH10 enzyme were the shortest, and those released by GH30 xylanase were of the largest diversity. For GH30 xylanase the 4-O-methyl-D-glucuronic acid (MeGlcA) side residues function as substrate specificity determinants regardless the acetylation of the neighboring hydroxyl group. Much simpler xylooligosaccharide patterns were observed when xylanases were applied in combination with carbohydrate esterase family 6 acetylxylan esterase. In the presence of the esterase, all aldouronic acids remained 3-O-acetylated on the xylopyranosyl (Xylp) residue substituted with MeGlcA. The 3-O-acetyl group, in contrast to the acetyl groups of otherwise unsubstituted Xylp residues, does not affect the mode of action of endoxylanases, but contributes to recalcitrance of the acidic xylan fragments. The results confirm importance of acetylxylan esterases in microbial degradation of acetylated hardwood glucuronoxylan. They also point to still unresolved question of efficient enzymatic removal of the 3-O-acetyl group on MeGlcA-substituted Xylp residues negatively affecting the saccharification yields.

  相似文献   

10.
The thermophilic actinomycete Thermomonospora fusca produced endoxylanase, α-arabinofuranosidase, β-xylosidase, and acetyl esterase activities maximally during growth on xylan. Growth yields on glucose, xylose, or arabinose were comparable, but production of endoxylanase and β-xylosidase was not induced on these substrates. The crude xylanase activity was thermostable and relatively resistant to end product inhibition by xylobiose and xylan hydrolysis products. Six proteins with xylanase activity were identified by zymogram analysis of isoelectric focusing gels, but only a 32-kDa protein exhibiting three isomeric forms could be purified by fast protein liquid chromatography. Endoglucanases were also identified in carboxymethylcellulose-grown cultures, and their distinction from endoxylanases was confirmed. α-Arabinofuranosidase activity was due to a single dimeric protein of 92 kDa, which was particularly resistant to end product inhibition by arabinose. Three bands of acetyl esterase activity were detected by zymogram analysis, and there was evidence that these mainly consisted of an intracellular 80-kDa protein secreted to yield active 40-kDa subunits in the culture supernatant. The acetyl esterases were found to be responsible for acetyl xylan esterase activity in T. fusca, in contrast to the distinction proposed in some other systems. The addition of purified βxylosidase to endoxylanase increased the hydrolysis of xylan, probably by relieving end product inhibition. The enhanced saccharification of wheat straw caused by the addition of purified α-arabinofuranosidase to T. fusca endoxylanase suggested a truly synergistic relationship, in agreement with proposals that arabinose side groups on the xylan chain participate in cross-linking within the plant cell wall structure.  相似文献   

11.

Background

Substitutions on the xylan main chain are widely accepted to limit plant cell wall degradability and acetylations are considered as one of the most important obstacles. Hence, understanding the modes of action of a range of acetylxylan esterases (AcXEs) is of ample importance not only to increase the understanding of the enzymology of plant decay/bioremediation but also to enable efficient bioconversion of plant biomass.

Methods

In this study, the modes of action of acetylxylan esterases (AcXEs) belonging to carbohydrate esterase (CE) families 1, 4, 5 and 6 on xylooligosaccharides generated from hardwood acetyl glucuronoxylan were compared using MALDI ToF MS. Supporting data were obtained by following enzymatic deacetylation by 1H NMR spectroscopy.

Conclusions

None of the used enzymes were capable of complete deacetylation, except from linear xylooligosaccharides which were completely deacetylated by some of the esterases in the presence of endoxylanase. A clear difference was observed between the performance of the serine-type esterases of CE families 1, 5 and 6, and the aspartate-metalloesterases of family CE4. The difference is mainly due to the inability of CE4 AcXEs to catalyze deacetylation of 2,3-di-O-acetylated xylopyranosyl residues. Complete deacetylation of a hardwood acetyl glucuronoxylan requires additional deacetylating enzyme(s).

General significance

The results contribute to the understanding of microbial degradation of plant biomass and outline the way to achieve complete saccharification of plant hemicelluloses which did not undergo alkaline pretreatment.  相似文献   

12.
Cellulose acetate (CA) was found to be a substrate of several acetyl xylan esterases (AXE). Eight AXE from different carbohydrate esterase (CE) families were tested on their activity against CA with a degree of substitution of 0.7 and 1.4. The classification of the AXEs into CE families according to their structure by hydrophobic cluster analysis followed clearly their activity against CA. Within the same CE family similar, and between the CE families different deacetylation behaviours could be observed. Furthermore, each esterase family showed a distinct regioselective mode of action. The CE 1 family enzymes regioselectively cleaved the substituents in C2- and C3-position, while CE 5 family enzymes only cleaved the acetyl groups in C2-position. CE 4 family enzymes seemed to interact only with the substituents in C3-position. Evidence was found that the deacetylation reaction of the CE 1 family enzymes proceeded faster in C2- than in C3-position of CA. The enzymes were able to cleave acetyl groups from fully substituted anhydroglucose units.  相似文献   

13.
Three acetyl esterases (AcEs) from the saprophytic bacteria Cellvibrio japonicus and Clostridium thermocellum, members of the carbohydrate esterase (CE) family 2, were tested for their activity against a series of model substrates including partially acetylated gluco-, manno- and xylopyranosides. All three enzymes showed a strong preference for deacetylation of the 6-position in aldohexoses. This regioselectivity is different from that of typical acetylxylan esterases (AcXEs). In aqueous medium saturated with vinyl acetate, the CE-2 enzymes catalyzed transacetylation to the same position, i.e., to the primary hydroxyl group of mono- and disaccharides. Xylose and xylooligosaccharides did not serve as acetyl group acceptors, therefore the CE-2 enzymes appear to be 6-O-deacetylases.  相似文献   

14.
The genes encoding acetyl xylan esterase 1 (axe1) and a beta-xylosidase (xylB) have been cloned and sequenced from Thermoanaerobacterium sp. strain JW/SL YS485. axe1 is located 22 nucleotides 3' of the xylB sequence. The identity of axe1 was confirmed by comparison of the deduced amino acid sequence to peptide sequence analysis data from purified acetyl xylan esterase 1. The xylB gene was identified by expression cloning and by sequence homology to known beta-xylosidases. Plasmids which independently expressed either acetyl xylan esterase 1 (pAct1BK) or beta-xylosidase (pXylo-1.1) were constructed in Escherichia coli. Plasmid pXylAct-1 contained both genes joined at a unique EcoRI site and expressed both activities. Substrate specificity, pH, and temperature optima were determined for partially purified recombinant acetyl xylan esterase 1 and for crude recombinant beta-xylosidase. Similarity searches showed that the axe1 and xylB genes were homologs of the ORF-1 and xynB genes, respectively, isolated from Thermoanaerobacterium saccharolyticum. Although the deduced sequence of the axe1 product had no significant amino acid sequence similarity to any reported acetyl xylan esterase sequence, it did have strong similarity to cephalosporin C deacetylase from Bacillus subtilis. Recombinant acetyl xylan esterase 1 was found to have thermostable deacetylase activity towards a number of acetylated substrates, including cephalosporin C and 7-aminocephalosporanic acid.  相似文献   

15.

Background

Trichoderma reesei CE16 acetyl esterase (AcE) is a component of the plant cell wall degrading system of the fungus. The enzyme behaves as an exo-acting deacetylase removing acetyl groups from non-reducing end sugar residues.

Methods

In this work we demonstrate this exo-deacetylating activity on natural acetylated xylooligosaccharides using MALDI ToF MS.

Results

The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most prominent target is the 3-O-acetyl group at the non-reducing terminal Xylp residues of linear neutral xylooligosaccharides or on aldouronic acids carrying MeGlcA at the non-reducing terminus. Deacetylation of the non-reducing end sugar may involve migration of acetyl groups to position 4, which also serves as substrate of the TrCE16 esterase.

Conclusion

Concerted action of CtGH10 xylanase, an AcXE and TrCE16 AcE resulted in close to complete deacetylation of neutral xylooligosaccharides, whereas substitution with MeGlcA prevents removal of acetyl groups from only a small fraction of the aldouronic acids. Experiments with diacetyl derivatives of methyl β-d-xylopyranoside confirmed that the best substrate of TrCE16 AcE is 3-O-acetylated Xylp residue followed by 4-O-acetylated Xylp residue with a free vicinal hydroxyl group.

General significance

This study shows that CE16 acetyl esterases are crucial enzymes to achieve complete deacetylation and, consequently, complete the saccharification of acetylated xylans by xylanases, which is an important task of current biotechnology.  相似文献   

16.
The distribution of acetyl esterase was studied in 30 strains of wood-rotting fungi. A screening test on agar plates using glucose β-d-pentaacetate as a substrate indicated that all tested fungi produced acetyl esterase to form a clear zone on the culture. All fungi also showed positive responses in an agar test using carboxymethyl cellulose acetate. Enzyme assay showed that extracellular acetylxylan esterase activity was present in the filtrates of wood-meal culture of all these fungi. The ratio of fungal acetylxylan esterase activity to 4-nitrophenyl acetyl esterase activity were higher than that of porcine liver esterase, indicating that fungal esterases have high affinity for acetylated carbohydrates. Acetyl esterase is suggested to be distributed widely in wood-rotting fungi for degradation of native acetylated hemicelluloses.  相似文献   

17.
Several hemicellulolytic microorganisms were screened for their capability of liberating acetyl side groups from native softwood galactoglucomannan. All the microorganisms tested were found to produce an extracellular acetyl glucomannan esterase(s). The highest activity was detected in Schizophyllum commune culture filtrate. However, the enzyme produced by Aspergillus oryzae was most efficient in long-term hydrolysis. Acting alone, the purified esterase of A. oryzae was able to liberate most of the acetic acid from galactoglucomannan. The addition of other galactoglucomannan-degrading enzymes did not affect the action of esterase. On the other hand, the addition of esterase clearly enhanced the action of mannanase and -galactosidase. The purified acetyl esterase of Trichoderma reesei was able to liberate acetic acid from short oligomers of glucomannan, whereas the acetyl xylan esterase of T. reesei was unable to act on glucomannan oligomers of any size. Correspondence to: M. Tenkanen  相似文献   

18.
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K(m) of 0.9 mM and a V(max) of 785 micromol min(-1) mg(-1). It had temperature and pH optima of 30 degrees C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases.  相似文献   

19.
乙酰木聚糖酯酶可以水解乙酰化木聚糖中的O-乙酰取代基团,消除该基团对木聚糖酶水解的空间阻碍作用,增强木聚糖酶对木聚糖的亲和力和降解能力。以白色链霉菌基因组为模板,利用简并PCR和TAIL-PCR扩增获得长约741 bp阅读框片段,编码247个氨基酸。生物信息学分析表明,该多肽片段具有AXE1家族蛋白保守区域;与已知的乙酰木聚糖酯酶蛋白C端区相比,相似性较高,二级和三级结构空间排布特点极为相似;初步判定该多肽片段为白色链霉菌乙酰木聚糖酯酶的C端区域。  相似文献   

20.
TM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short‐chain acyl esters (C2–C3), and is optimal around 100°C and pH 7.5. The positional specificity of TM0077 was investigated using 4‐nitrophenyl‐β‐D ‐xylopyranoside monoacetates as substrates in a β‐xylosidase‐coupled assay. TM0077 hydrolyzes acetate at positions 2, 3, and 4 with equal efficiency. No activity was detected on xylan or acetylated xylan, which implies that TM0077 is an acetyl esterase and not an acetyl xylan esterase as currently annotated. Selenomethionine‐substituted and native structures of TM0077 were determined at 2.1 and 2.5 Å resolution, respectively, revealing a classic α/β‐hydrolase fold. TM0077 assembles into a doughnut‐shaped hexamer with small tunnels on either side leading to an inner cavity, which contains the six catalytic centers. Structures of TM0077 with covalently bound phenylmethylsulfonyl fluoride and paraoxon were determined to 2.4 and 2.1 Å, respectively, and confirmed that both inhibitors bind covalently to the catalytic serine (Ser188). Upon binding of inhibitor, the catalytic serine adopts an altered conformation, as observed in other esterase and lipases, and supports a previously proposed catalytic mechanism in which Ser hydroxyl rotation prevents reversal of the reaction and allows access of a water molecule for completion of the reaction. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号