首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heterogeneity and chemical composition were investigated in κ-casein from colostrum. The acid casein was obtained from four different Holstein cow colostra. The yield of acid casein from colostrum was higher than that from normal milk. κ-Casein from colostrum was prepared by the gel filtration method of Yaguchi et al. The gel filtration profiles differed among the four colostrum acid caseins.

Colostrum κ-casein was fractionated on a DEAE-cellulose column into one nonadsorbed and six adsorbed fractions with increasing salt concentration. Six adsorbed fractions had the same molecular weight and stabilizing ability for αs1-casein in the presence of calcium ion. The amino acid composition and the phosphorus content of the adsorbed fractions were identical, but fractions eluted with high salt concentrations had more carbohydrates (galactose, sialic acid, glucosamine, galactosamine). Colostrum κ-casein was characterized by a higher content of carbohydrate moiety in comparison with normal κ-casein. Also glucosamine which has not been found in normal κ-casein was detected in colostrum κ-casein. The κ-casein component from colostrum contained at least one molecule of carbohydrate, though the carbo hydrate-free component was detected in normal κ-casein.  相似文献   

2.
The process of complex formation of casein from skimmed milk and purified casein with chitosan of different molecular weights was studied. It was shown that at pH 6.3 casein micelles and parts of whey proteins coagulated with positively charged chitosan molecules with molecular weights of 45.3, 25.4, 7.7 and 1.5 kDa. As a result of ionic interaction of chitosan with skimmed milk proteins the yield of target product reached 90–92%. It consisted of all forms of casein: α-casein, β-casein, κ-casein and small amount of whey proteins.  相似文献   

3.
αS-Casein, the major milk protein, comprises αS1- and αS2-casein and acts as a molecular chaperone, stabilizing an array of stressed target proteins against precipitation. Here, we report that αS-casein acts in a similar manner to the unrelated small heat-shock proteins (sHsps) and clusterin in that it does not preserve the activity of stressed target enzymes. However, in contrast to sHsps and clusterin, α-casein does not bind target proteins in a state that facilitates refolding by Hsp70. αS-Casein was also separated into α- and α-casein, and the chaperone abilities of each of these proteins were assessed with amorphously aggregating and fibril-forming target proteins. Under reduction stress, all α-casein species exhibited similar chaperone ability, whereas under heat stress, α-casein was a poorer chaperone. Conversely, αS2-casein was less effective at preventing fibril formation by modified κ-casein, whereas α- and αS1-casein were comparably potent inhibitors. In the presence of added salt and heat stress, αS1-, α- and αS-casein were all significantly less effective. We conclude that αS1- and α-casein stabilise each other to facilitate optimal chaperone activity of αS-casein. This work highlights the interdependency of casein proteins for their structural stability.  相似文献   

4.
J Chun  G Bhak  SG Lee  JH Lee  D Lee  K Char  SR Paik 《Biomacromolecules》2012,13(9):2731-2738
Functions are diversified by producing hierarchical structures from a single raw material. Biologically compatible milk protein of κ-casein has been employed to fabricate higher-order suprastructures. In the presence of dithiothreitol and heat treatment, κ-casein transforms into amyloid fibrils with distinctive morphology attributable to mechanism-based fibrillar polymorphism. As the fibrils elongate to yield high aspect ratio during high-temperature incubation, the resulting fibrils laterally associate into the liquid crystalline state by forming a two-dimensional fibrillar array. Following a desalting process, the fibrillar arrays turn into a three-dimensional matrix of hydrogel that could be selectively disintegrated by subsequent salt treatment. The hydrogel was demonstrated to be a matrix capable of exhibiting controlled release of bioactive substances like retinoic acid, which led to temporal and spatial control over the differentiation of neuronal cells. Therefore, the hierarchical suprastructure formation derived from the single protein of κ-casein producing one-dimensional protein nanofibrils, a two-dimensional liquid crystalline state and a three-dimensional hydrogel could be widely appreciated in various areas of nanobiotechnology including drug delivery and tissue engineering.  相似文献   

5.
Caseins constitute the main protein components in mammalian milk and have critical functions in calcium transport and prevention of protein aggregation. Fibrillation and aggregation of κ-casein, a phenomenon which has only recently been detected, might be associated with malfunctions of milk secretion and amyloidosis phenomena in the mammary glands. This study employs a newly-designed chromatic biomimetic vesicle assay to investigate the occurrence and the parameters affecting membrane interactions of casein aggregates and the contribution of individual casein members to membrane binding. We show that physiological casein colloids exhibit membrane activity, as well as early globular aggregates of κ-casein, a prominent casein isoform. Furthermore, inhibition of κ-casein fibrillation through complexation with αS-casein and β-casein, respectively, was found to go hand in hand with induction of enhanced membrane binding; these data are important in the context of casein biology since in secreted milk κ-casein is found only in assemblies containing also αS-casein and β-casein. The chromatic experiments, complemented by transmission electron microscopy analysis and fluorescence quenching assays, also revealed significantly higher affinity early spherical aggregates of k-casein to anionic phosphatidylglycerol-lipids, as compared to zwitterionic phospholipids. Overall, this study suggests that lipid interactions play important roles in maintaining the essential physiological functions of caseins in mammalian milk.  相似文献   

6.
The caseins of milk form a unique calcium–phosphate transport complex that provides these necessary nutrients to the neonate. The colloidal stability of these particles is primarily the result of κ-casein. As purified from milk, this protein occurs as spherical particles with a weight average molecular weight of 1.18 million. The protein exhibits a unique disulfide bonding pattern, which (in the absence of reducing agents) ranges from monomer to octamers and above on SDS-PAGE. Severe heat treatment of the κ-casein (90°C) in the absence of SDS, before electrophoresis, caused an increase in the polymeric distribution: up to 40% randomly aggregated high–molecular weight polymers, presumably promoted by free sulfhydryl groups (J. Protein Chem. 17: 73–84, 1998). To ascertain the role of the sulfhydryl groups, the protein was reduced and carboxymethylated (RCM-κ). Surprisingly, at only 37°C, the RCM-κ-casein exhibited an increase in weight average molecular weight and tendency to self-association when studied at 3000 rpm by analytical ultracentrifugation. Electron microscopy (EM) of the 37°C RCM sample showed that, in addition to the spherical particles found in the native protein, there was a high proportion of fibrillar structures. The fibrillar structures were up to 600 nm in length. Circular dichroism (CD) spectroscopy was used to investigate the temperature-induced changes in the secondary structure of the native and RCM-κ-caseins. These studies indicate that there was little change in the distribution of secondary structural elements during this transition, with extended strand and κ turns predominating. On the basis of three-dimensional molecular modeling predictions, there may exist a tyrosine-rich repeated sheet-turnsheet motif in κ-casein (residues 15–65), which may allow for the stacking of the molecules into fibrillar structures. Previous studies on amyloid proteins have suggested that such motifs promote fibril formation, and near-ultraviolet CD and thioflavin-T binding studies on RCM-κ-casein support this concept. The results are discussed with respect to the role that such fibrils may play in the synthesis and secretion of casein micelles in lactating mammary gland.  相似文献   

7.
8.
This study aimed to evaluate amino acids content and the electrophoretic profile of camel milk casein from different camel breeds. Milk from three different camel breeds (Majaheim, Wadah and Safrah) as well as cow milk were used in this study.Results showed that ash and moisture contents were significantly higher in camel milk casein of all breeds compared to that of cow milk. On the other hand, casein protein of cow milk was significantly higher compared to that of all camel milk breeds. Molecular weights of casein patterns of camel milk breeds were higher compared to that of cow milk.Essential (Phe, Lys and His) and non-essential amino acids content was significantly higher in cow milk casein compared to the casein of all camel milk breeds. However, there was no significant difference for the other essential amino acids between cow casein and the casein of Safrah breed and their quantities in cow and Safrah casein were significantly higher compared to the other two breeds. Non-essential amino acids except Arg and the essential amino acids (Met, Ile, Lue and Phe) were also significantly higher in cow milk α-casein compared to α-casein from all camel breeds. Moreover, essential amino acids (Val, Phe and His) and the non-essential amino acids (Gly and Ser) content was significantly higher in cow milk β-casein compared to the β-casein of all camel milk breeds and the opposite was true for Lys, Thr, Met and Ile. However, Met, Ile, Phe and His were significantly higher for β-casein of Majaheim compared to the other two milk breeds. The non-essential amino acids (Gly, Tyr, Ala and Asp) and the essential amino acids (Thr, Val and Ile) were significantly higher in cow milk κ-casein compared to that for all camel milk breeds. There was no significant difference among all camel milk breeds in their κ-casein content of most essential amino acids.Relative migration of casein bands of camel milk casein was not identical. The relative migration of αs-, β- and κ-casein of camel casein was slower than those of cow casein. The molecular weights of αs-, β- and κ-casein of camel caseins were 27.6, 23.8 and 22.4 KDa, respectively. More studies are needed to elucidate the structure of camel milk.  相似文献   

9.
Multiple forms of αs1-casein were identified in the four major ruminant species by structural characterization of the protein fraction. While αs1-casein phenotypes were constituted by a mixture of at least seven molecular forms in ovine and caprine species, there were only two forms in bovine and water buffalo species. In ovine and caprine forms the main component corresponded to the 199-residue-long form, and the deleted proteins differed from the complete one by the absence of peptides 141–148, 110–117, or Gln78, or a combination of such deletions. The deleted segments corresponded to the sequence regions encoded by exons 13 and 16, and by the first triplet of exon 11 (CAG), suggesting that the occurrence of the short protein forms is due to alternative skipping, as previously demonstrated for some caprine and ovine phenotypes. The alternative deletion of Gln78 in αs1-casein, the only form common to the milk of all the species examined and located in a sequence region joining the polar phosphorylation cluster and the hydrophobic C-terminal domain of the protein, may play a functional role in the stabilization of the milk micelle structure.  相似文献   

10.
S-carboxymethylated (SCM) κ-casein forms in vitro fibrils that display several characteristics of amyloid fibrils, although the protein is unrelated to amyloid diseases. In order to get insight into the processes that prevent the formation of amyloid fibrils made of κ-caseins in milk, we have characterized in detail the reaction and the roles of its possible effectors: glycosylation and other caseins. Given that native κ-casein occurs as a heterogeneous mixture of carbohydrate-free and carbohydrate-containing chains, kinetics of fibril formation were performed on purified glycosylated and unglycosylated SCM κ-caseins using the fluorescent dye thioflavin T in conjunction with transmission electron microscopy and Fourier transform infrared spectroscopy for morphological and structural analyses. Both unglycosylated and glycosylated SCM κ-caseins have the ability to fibrillate. Kinetic data indicate that the fibril formation rate increases with SCM κ-casein concentration but reaches a plateau at high concentrations, for both the unglycosylated and glycosylated forms. Therefore, a conformational rearrangement is the rate-limiting step in fibril growth of SCM κ-casein. Transmission electron microscopy images indicate the presence of 10- to 12-nm spherical particles prior to the appearance of amyloid structure. Fourier transform infrared spectroscopy spectra reveal a conformational change within these micellar aggregates during the fibrillation. Fibrils are helical ribbons with a pitch of about 120-130 nm and a width of 10-12 nm. Taken together, these findings suggest a model of aggregation during which the SCM κ-casein monomer is in rapid equilibrium with a micellar aggregate that subsequently undergoes a conformational rearrangement into a more organized species. These micelles assemble and this leads to the growing of amyloid fibrils. Addition of αs1-and β-caseins decreases the growth rate of fibrils. Their main effect was on the elongation rate, which became close to that of the limiting conformation change, leading to the appearance of a lag phase at the beginning of the kinetics.  相似文献   

11.
In our previous paper (Nagy et?al. in J Biol Chem 285:38811–38817, 2010) by using a multilayered model system, we showed that, from α-casein, aggregates (similar to natural casein micelles) can be built up step by step if Ca-phosphate nanocluster incorporation is ensured between the protein adsorption steps. It remained, however, an open question whether the growth of the aggregates can be terminated, similarly to in nature with casein micelles. Here, we show that, in the presence of Ca-phosphate nanoclusters, upon adsorbing onto earlier α-casein surfaces, the secondary structure of α-casein remains practically unaffected, but κ-casein exhibits considerable changes in its secondary structure as manifested by a shift toward having more β-structures. In the absence of Ca-phosphate, only κ-casein can still adsorb onto the underlying casein surface; this κ-casein also expresses considerable shift toward β-structures. In addition, this κ-casein cover terminates casein aggregation; no further adsorption of either α- or κ-casein can be achieved. These results, while obtained on a model system, may show that the Ca-insensitive κ-casein can, indeed, be the outer layer of the casein micelles, not only because of its “hairy” extrusion into the water phase, but because of its “softer” secondary structure, which can “occlude” the interacting motifs serving casein aggregation. We think that the revealed nature of the molecular interactions, and the growth mechanism found here, might be useful to understand the aggregation process of casein micelles also in?vivo.  相似文献   

12.
Elevated homocysteine levels are resulting in N-homocysteinylation of lysyl residues in proteins and they correlate with a number of human pathologies. However, the role of homocysteinylation of lysyl residues is still poorly known. In order to study the features of homocysteinylation of intrinsically unstructured proteins (IUP) bovine caseins were used as a model. α(S1)-, β- and κ-caseins, showing different aggregations and micelle formation, were modified with homocysteine-thiolactone and their physico-chemical properties were studied. Efficiency of homocysteine incorporation was estimated to be about 1.5, 2.1 and 1.3 homocysteyl residues per one β-, α(S1)-, and κ-casein molecule, respectively. Use of intrinsic and extrinsic fluorescent markers such as Trp, thioflavin T and ANS, reveal structural changes of casein structures after homocysteinylation reflected by an increase in beta-sheet content, which in some cases may be characteristic of amyloid-like transformations. CD spectra also show an increase in beta-sheet content of homocysteinylated caseins. Casein homocysteinylation leads in all cases to aggregation. The sizes of aggregates and aggregation rates were dependent on homocysteine thiolactone concentration and temperature. DLS and microscopic studies have revealed the formation of large aggregates of about 1-3μm. Homocysteinylation of α(S1)- and β-caseins results in formation of regular spheres. Homocysteinylated κ-casein forms thin unbranched fibrils about 400-800nm long. In case of κ-casein amyloidogenic effect of homocysteinylation was confirmed by Congo red spectra. Taken together, data indicate that N-homocysteinylation provokes significant changes in properties of native caseins. A comparison of amyloidogenic transformation of 3 different casein types, belonging to the IUP protein family, shows that the efficiency of amyloidogenic transformation upon homocysteinylation depends on micellization capacity, additional disulphide bonds and other structural features.  相似文献   

13.
Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins’ sequences. Release of peptides was concentrated to specific regions, such as residues 70–92 of β-casein in human milk, residues 39–55 of β-lactoglobulin in infant formula, and residues 57–96 and 145–161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development.  相似文献   

14.
15.
Bovine κ-casein, a phosphoglycoprotein, has mucin-type carbohydrate chains. Subcellular distribution of enzymes that take part in the post-translational modification of κ-casein was examined. In lactating mammary glands from rats and cows, N-acetyl-galactosaminyl transferase, galactosyl transferase, sialyl transferase, and casein kinase were localized specifically in the Golgi apparatus.

The substrate specificities indicate that these enzymes are actually responsible for the processing of κ-casein.

The presence of a phosphate group attached to κ-casein did not affect the rate of glycosylation by N-acetyl-galactosaminyl transferase, while the presence of carbohydrate chains attached to κ- casein strongly reduced the rate of phosphorylation by casein kinase. These results suggest that in the Golgi apparatus, phosphorylation of κ-casein precedes glycosylation.  相似文献   

16.
The present report is dealing with the identification, in various unrelated proteins, of protein fragments sharing local sequence and structure similarities with the chymosin-sensitive linkage surrounding the Phe-Met/Ile bond of κ-caseins. In all these proteins, this linkage is observed within an exposed β-strand-like structure, as also predicted for κ-caseins. The structure of one of these fragments, included in glutamine synthetase, particularly superimposes well with the conformation observed for a chymosin inhibitor (CP-113972) within the complex it forms with chymosin and can be similarly accommodated by specificity pockets within the enzyme substrate binding cleft. The effect of the enzyme activity of chymosin was thus tested on glutamine synthetase. Chymosin cut the latter at the Phe-Met linkage, suggesting that this system may locally resemble the κ-casein/chymosin complex.  相似文献   

17.
The protein substrate specificity of a calmodulin-dependent protein kinase activity from the cytosolic fraction of bovine heart was examined. Prior to the experiments, the kinase activity was purified more than 50-fold with a recovery of greater than 10% of the homogenate activity. Two endogenous protein substrates of molecular weight 57,000 and 73,000 were phosphorylated in these kinase preparations. The kinase preparation was also able to phosphorylate exogenous synapsin, phospholamban, glycogen synthase, MAP-2, myelin basic proteins and κ-casein, but not tubulin, pyruvate kinase, the regulatory subunit of cAMP protein kinase II, myosin light chain or phosphorylase b. High levels of calmodulin were required for activation of the kinase activity toward the 57,000 and 73,000 molecular weight endogenous substrates (K0.5 = 93 +/- 5 nM), glycogen synthase (K0.5 = 127 +/- 10 nM), and κ-casein (K0.5 = 321 +/- 107 nM). The kinase possessed a high affinity for glycogen synthase (half maximal activity at 0.9 +/- 0.4 μM) but a low affinity for κ-casein (21 +/- 2 μM). Sucrose density gradient centrifugation separated the calmodulin-dependent protein kinase activity into two fractions with apparent molecular weights of approximately 900,000 and 100,000. Both fractions phosphorylated the endogenous 57,000 molecular weight substrate and glycogen synthase similarly. These results indicate that cardiac calmodulin-dependent protein kinase previously observed to phosphorylate endogenous protein substrate possesses a wide range of substrate specificity.  相似文献   

18.
κ-Caseins were prepared by the calciurn-ethanol method, the Sephadex method and the urea-sulfuric acid method. Some important properties of κ-caseins were investigated using isoelectric focusing, starch gel electrophoresis, ultracentrifugation, chemical analysis, stabilization test of αs-casein, and rennin treatment. Isoelectric focusing established that κ-casein had its isoelectric point near pH 6.0 in 6 m urea, usually accompanied by a second peak around pH 5.6. Ultracentrifugation, however, showed a single peak having a s20,w value of 2.6 ~ 3.8 in the presence of 6 m urea and of 14.4 in the absence of such dispersing reagents. Normal contents of hexose, sialic acid, phosphorus, and nitrogen were about 1.5, 0.8, 0.2, and 14%, respectively. Relative patterns of amino acid composition were similar in all of the κ-caseins. In addition, amino acid composition in intact κ-casein and in the further purified κ-casein which formed the second peak in DEAE cellulose chromatography were almost identical, indicating that the κ-casein of the first peak is not an impurity but is one of the components which formed the original κ-casein complexes. The ability of κ-caseins to stabilize αs-casein in the presence of calcium increased when purified by DEAE cellulose chromatography.  相似文献   

19.
This study is an exploratory analysis for understanding the effect of a duodenal infusion of an α-linolenic acid (LNA) on the plasma and milk proteome of lactating dairy cows. Four primiparous Holstein cows were fitted with duodenal cannulas and received 0, 100, 200, 300 and 400 g/day of LNA in a two-treatment crossover design. Blood and milk were collected for determination of protein composition by two-dimensional gel electrophoresis. Alteration of protein spots was detected and identified using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS). Plasma haptoglobin levels, and milk β-casein A2, αs1-casein variant and albumin, did not differ in cows after infusion of 0, 100, 200 and 300 g/day of LNA, but were increased after the cows received duodenal infusion of 400 g/day of LNA. Western blot analysis of haptoglobin expression in plasma confirmed the alterations in protein expression seen using MS. This study demonstrated that infusion of high doses of LNA by duodenal cannula can result in metabolic stress within the bovine intestine and in changes in milk composition.  相似文献   

20.
The objective of this study was to perform a whole genome scan to detect quantitative trait loci (QTL) for milk protein composition in 849 Holstein–Friesian cows originating from seven sires. One morning milk sample was analysed for the major milk proteins using capillary zone electrophoresis. A genetic map was constructed with 1341 single nucleotide polymorphisms, covering 2829 centimorgans (cM) and 95% of the cattle genome. The chromosomal regions most significantly related to milk protein composition ( P genome < 0.05) were found on Bos taurus autosomes (BTA) 6, 11 and 14. The QTL on BTA6 was found at about 80 cM, and affected αS1-casein, αS2-casein, β-casein and κ-casein. The QTL on BTA11 was found at 124 cM, and affected β-lactoglobulin, and the QTL on BTA14 was found at 0 cM, and affected protein percentage. The proportion of phenotypic variance explained by the QTL was 3.6% for β-casein and 7.9% for κ-casein on BTA6, 28.3% for β-lactoglobulin on BTA11, and 8.6% for protein percentage on BTA14. The QTL affecting αS2-casein on BTA6 and 17 showed a significant interaction. We investigated the extent to which the detected QTL affecting milk protein composition could be explained by known polymorphisms in β-casein , κ -casein , β-lactoglobulin and DGAT1 genes. Correction for these polymorphisms decreased the proportion of phenotypic variance explained by the QTL previously found on BTA6, 11 and 14. Thus, several significant QTL affecting milk protein composition were found, of which some QTL could partially be explained by polymorphisms in milk protein genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号