首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Appropriate thyroid gland function and thyroid hormone activity are considered crucial to sustain the productive performance in domestic animals (growth, milk or hair fibre production). Changes of blood thyroid hormone concentrations are an indirect measure of the changes in thyroid gland activity and circulating thyroid hormones can be considered as indicators of the metabolic and nutritional status of the animals. Thyroid hormones play a pivotal role in the mechanisms permitting the animals to live and breed in the surrounding environment. Variations in hormone bioactivity allow the animals to adapt their metabolic balance to different environmental conditions, changes in nutrient requirements and availability, and to homeorhetic changes during different physiological stages. This is particularly important in the free-ranging and grazing animals, such as traditionally reared small ruminants, whose main physiological functions (feed intake, reproduction, hair growth) are markedly seasonal. Many investigations dealt with the involvement of thyroid hormones in the expression of endogenous seasonal rhythms, such as reproduction and hair growth cycles in fibre-producing (wool, mohair, cashmere) sheep and goats. Important knowledge about the pattern of thyroid hormone metabolism and their role in ontogenetic development has been obtained from studies in the ovine foetus and in the newborn. Many endogenous (breed, age, gender, physiological state) and environmental factors (climate, season, with a primary role of nutrition) are able to affect thyroid activity and hormone concentrations in blood, acting at the level of hypothalamus, pituitary and/or thyroid gland, as well as on peripheral monodeiodination. Knowledge on such topics mirror physiological changes and possibly allows the monitoring and manipulation of thyroid physiology, in order to improve animal health, welfare and production.  相似文献   

2.
Insulin-like growth factor binding protein-2 (IGFBP2) is a key regulator of IGF activity that has been associated with insulin resistance and obesity. In cows, IGFBP2 mRNA expression is differentially regulated according to nutritional status in different tissues including the liver, reproductive tract, and mammary gland. This study investigated associations between single nucleotide polymorphisms (SNPs) in bovine IGFBP2 with fertility, milk production, and metabolic traits in Holstein-Friesian dairy cows. Fertility was assessed in heifers by measuring age at first service, age at first conception, and age at first calving. During the first and second lactation, the number of postpartum days for commencement of luteal activity (based on milk progesterone profiles), days to first service, days to conception, average milk production per day, 305-day milk yield, total milk yield, and total days in milk were recorded. Blood samples were taken at -1, +1, and +8 weeks relative to first and second calving for assessment of metabolic status (IGF1, insulin, beta-hydroxybutyrate, and glucose). Five novel SNPs were identified in IGFBP2, two of which had significant associations with fertility (age at conception in heifers and commencement of luteal activity) and 305-day milk yield in lactation 1. Trends of association were also observed with the peripartum metabolic status, in particular the glucose, insulin, and beta-hydroxybutyrate concentrations around second calving. These results indicate that IGFBP2 SNPs may influence tissue mobilization in dairy cows and may thus be of interest for marker assisted selection.  相似文献   

3.
Antral follicle growth in cattle occurs in two distinct phases; the first 'slow' growth phase spans the time from antrum acquisition to a size of approximately 3 mm detectable by transrectal ultrasound, and the second 'fast' phase is gondadotrophin-dependent and includes cohort growth, dominant follicle (DF) selection, and DF growth. This review summarises current concepts of the relative roles FSH and LH, ovarian and metabolic hormones play mainly in the second phase of antral follicle growth in animals of different reproductive and nutritional states. It is proposed that differential FSH response may enable one cohort follicle to become selected, and that follicular secretions, particularly inhibin, suppress FSH and thus are responsible for DF selection and dominance. Acute dependence of the DF on LH pulses will determine DF lifespan, and the LH pulse profile can be influenced by metabolic hormones such as leptin, providing one possible link for nutritional state and reproduction. Direct ovarian effects of acute and chronic changes in growth hormone, insulin and insulin-like growth factor (IGF)-I have been described on cohort follicles, DF oestrogen activity and on DF growth. Influences of metabolic hormones on early antral follicles undergoing their first 'slow' growth phase are less well described, yet metabolic hormones appear to enhance growth into the cohort available for FSH-induced emergence, and may influence subsequent developmental competence of oocytes.  相似文献   

4.
Cows in severe negative energy balance after calving have reduced fertility, mediated by metabolic signals influencing the reproductive system. We hypothesised that transition diet could alter metabolic status after calving, and thus influence fertility. Multiparous dairy cows were assigned to four transition groups 6 weeks pre-calving and fed: (a) basal control diet (n = 10); (b) basal diet plus barley (STARCH, n = 10); (c) basal diet plus Soypass (high protein, HiPROT, n = 11); or (d) no transition management (NoTRANS, n = 9). All cows received the same lactational diet. Blood samples, body weights and condition scores (BCS) were collected weekly. Fertility parameters were monitored using milk progesterone profiles and were not affected by transition diet. Data from all cows were then combined and analysed according to the pattern of post-partum ovarian activity. Cows with low progesterone profiles had significantly lower insulin-like growth factor-I (IGF-I) and insulin concentrations accompanied by reduced dry matter intakes (DMIs), BCS and body weight. Cows with prolonged luteal activity (PLA) were older and tended to have lower IGF-I. Analysis based on the calving to conception interval revealed that cows which failed to conceive (9/40) also had reduced IGF-I, BCS and body weight. Fertility was, therefore, decreased in cows which were in poor metabolic status following calving. This was reflected in reduced circulating IGF-I concentrations and compromised both ovarian activity and conception. There was little effect of the transition diets on these parameters.  相似文献   

5.
Metabolic profiles and progesterone cycles in first lactation dairy cows   总被引:2,自引:0,他引:2  
This study investigated the ovarian function, metabolic profiles and fertility in first lactation Holstein-Friesian dairy cows (mean 305 day milk yield: 7417+/-191kg, n=37). Reproductive profiles obtained from milk progesterone analysis were categorized into normal (n=17) and four abnormal profiles (delayed ovulation, DOV1, n=9; DOV2, n=2; persistent corpus luteum, PCL1, n=6; PCL2, n=4; 1: immediately post-calving, 2: subsequent cycles). Fifty-five percent of cows had abnormal profiles with half of these being categorized as DOV1. Fertility of DOV1 and DOV2 cows was reduced whereas PCL1 and PCL2 cows had similar reproductive competence to normal profile cows. DOV1 animals had higher milk energy values, lower energy balances, lower dry matter intakes (DMI) and greater body weight and body condition score (BCS) losses post-calving than normal profile animals. DOV1 animals also had lower insulin-like growth factor-I (IGF-I) and higher betahydroxybutyrate (BHB) concentrations and tended to have the lower insulin and glucose concentrations in the pre-service period than normal profile cows. All PCL animals had vulval discharges postpartum. Despite this, the DMI, body weight and BCS changes, IGF-I concentrations and fertility of PCL1 animals was similar to normal profile cows. In conclusion, the high prevalence of delayed ovulation post-calving (DOV1) in primiparous high yielding cows lasted long enough (71+/-8.3 days) to have a detrimental impact on fertility and was associated with significant physiological changes. This study did not establish any detrimental effects of PCL profiles on fertility or production parameters.  相似文献   

6.
This paper discusses the phenomenon of nutritional flushing in ewes whereby increased nutrition stimulates folliculogenesis and ovulation rate. In addition the paper reviews recent findings on the effects of increased levels of nutrition on the blood concentrations of reproductive and metabolic hormones in the ewe and some of the intraovarian changes that take place in response to nutritional stimulation. Finally, in the paper, we propose a model of the physiological mechanism for the nutritional stimulation of folliculogenesis and we review how closely the model fits recent published and unpublished evidence examining the mechanism of flushing. Nutritional stimulation alters the blood concentrations of some metabolic hormones. By using short-term models of nutritional flushing, we have shown that as the blood concentrations of insulin and leptin increase that of growth hormone decreases while that of IGF-I appears unaffected by the nutritional flushing. Nutritional flushing also alters the blood concentrations of some reproductive hormones. Again, using the same model, we have shown that there is a transient increase in FSH and a decrease in oestradiol concentrations in the blood. The changes in oestradiol are particularly evident in the follicular phase of the oestrous cycle. In the ovary, the effect of nutrition is to stimulate folliculogenesis. These changes are associated with intra-follicular alterations in the insulin-glucose, IGF and leptin metabolic systems. The stimulation of these intra-follicular systems leads to a suppression in follicular oestradiol production. The consequence of these direct actions on the follicle is a reduced negative feedback to the hypothalamic-pituitary system and increased FSH secretion that leads to a stimulation of folliculogenesis.  相似文献   

7.
Information regarding sexual maturity and reproductive cycles in skates has largely been based on gross morphological changes within the reproductive tract. While this information has proved valuable in obtaining life history information, it also necessitates sacrificing the skates to obtain this data. In contrast, few studies have used circulating steroid hormones to establish when these batoids become reproductively capable or for the determination of reproductive cyclicity. This study summarizes our current knowledge of hormonal analyses in determining skate reproductive status and offers information that suggests analysis of circulating steroid hormone concentrations provide a means to determine size at sexual maturity and asses reproductive cycles without the need to sacrifice the skate.  相似文献   

8.
Reproductive efficiency is not optimal in high-producing dairy cows. Although many aspects of ovarian follicular growth in cows are similar to those observed in heifers, there are numerous specific differences in follicular development that may be linked with changes in reproductive physiology in high-producing lactating dairy cows. These include: 1) reduced circulating estradiol (E2) concentrations near estrus, 2) ovulation of follicles that are larger than the optimal size, 3) increased double ovulation and twinning, and 4) increased incidence of anovulation with a distinctive pattern of follicle growth in anovular dairy cows. The first three changes become more dramatic as milk production increases, although anovulation has not generally been associated with level of milk production. To overcome reproductive inefficiencies in dairy cows, reproductive management programs have been developed to synchronize ovulation and enable the use of timed AI in lactating dairy cows. Effective regulation of the CL, follicles, and hormonal environment during each part of the protocol is critical for optimizing these programs. This review discusses the distinct aspects of follicular development in lactating dairy cows and the methodologies that have been utilized in the past two decades in order to manage the dominant follicle during synchronization of ovulation and timed AI programs.  相似文献   

9.
The impact of nutrition and energy reserves on the fertility of ruminants has been extensively described. However, the metabolic factors and the molecular mechanisms involved in the interactions between nutrition and ovarian function are still poorly understood. These factors could be hormonal (either reproductive and/or metabolic) and/or dietary and metabolic (glucose, amino acids and fatty acids). In this review, we briefly summarize the impact of those nutrients (fatty acids, glucose and amino acids) and metabolic hormones (insulin/IGF-I, growth hormone, T3/4, ghrelin, apelin and the adipokines (leptin, adiponectin and resistin)) implicated in the development of ovarian follicles, oocytes and embryos in ruminants. We then discuss the current hypotheses on the mechanisms of action of these factors on ovarian function. We particularly describe the role of some energy sensors including adenosine monophosphate-activated kinase and peroxisome proliferator-activated receptors in the ovarian cells.  相似文献   

10.
《Theriogenology》2012,77(9):1568-1582
Reproductive efficiency is not optimal in high-producing dairy cows. Although many aspects of ovarian follicular growth in cows are similar to those observed in heifers, there are numerous specific differences in follicular development that may be linked with changes in reproductive physiology in high-producing lactating dairy cows. These include: 1) reduced circulating estradiol (E2) concentrations near estrus, 2) ovulation of follicles that are larger than the optimal size, 3) increased double ovulation and twinning, and 4) increased incidence of anovulation with a distinctive pattern of follicle growth in anovular dairy cows. The first three changes become more dramatic as milk production increases, although anovulation has not generally been associated with level of milk production. To overcome reproductive inefficiencies in dairy cows, reproductive management programs have been developed to synchronize ovulation and enable the use of timed AI in lactating dairy cows. Effective regulation of the CL, follicles, and hormonal environment during each part of the protocol is critical for optimizing these programs. This review discusses the distinct aspects of follicular development in lactating dairy cows and the methodologies that have been utilized in the past two decades in order to manage the dominant follicle during synchronization of ovulation and timed AI programs.  相似文献   

11.
Thyroid hormones, cytokines, physical training and metabolic control.   总被引:2,自引:0,他引:2  
During the acute training response, peripheral cellular mechanisms are mainly metabolostatic to achieve energy supply. During prolonged training, glycogen deficiency occurs; this is associated with increased expression of local cytokines, and decreased insulin secretion and beta-adrenergic stimulation and lipolysis in adipose tissue which looses energy. This is indicated by decrease of adipocyte hormone leptin, which has inhibitory effects on excitatory hypothalamic neurons. Leptin, insulin, and cytokines such as interleukin 6 (IL-6) contribute to the metabolic error signal to the hypothalamus which result in decrease of hypothalamic release hormones and sympathoadrenergic stimulation. Thyroid stimulating hormone (TSH) is correlated to the metabolic hormones leptin and insulin, and may be used as indicator of metabolic control. Because the hypothalamus integrates various error signals (metabolic, hormonal, sensory afferents, and central stimuli), the pituitary's releasing hormones represent the functional status of an athlete. Long-term overtraining will lead to downregulation of hypothalamic hormonal and sympathoadrenergic responses, catabolism, and fatigue. These changes contribute to myopathy with predominant expression of slow muscle fiber type and inadequacy in performance. Thyroid hormones are closely involved in the training response and metabolic control.  相似文献   

12.
Paradigms of growth in fish   总被引:2,自引:0,他引:2  
Most fish are indeterminate growers with white muscle making up the majority of the acquired bulk. Within the muscle, the myofibrillar fraction accounts for almost two-thirds of the protein synthetic activity, implying that it is accretion of myofibrillar proteins that makes the single most important contribution to fish growth. Fish muscle growth itself is not linear and occurs through a combination of hyperplasia and hypertrophy in post-juvenile stages. Superimposed on periodicity of growth in length and mass can be other phases governed by lunar, reproductive or circannual cycles. Data on fish growth are discussed in the framework of site-specific muscle abundance, metabolic and functional zonation of muscle, proliferation and differentiation of satellite cells and the contribution of myofibrillar proteins. Hormonal control of muscle growth is described against the backdrop of plasma availability of myogens (insulin, IGF-I, growth hormone), distribution and dynamics of their respective receptors, and their interactions. Important contributions of the 'supply side' are discussed with hormones regulating amino acid resorption from the intestine, intestinal growth, liver processing and amino acid uptake by the muscle. Data are also interpreted from metabolic angles, to explain lipolytic and nitrogen-sparing effects of growth hormones, and lipogenic effects of insulin and high protein diets. Finally, special attention is devoted to the multifaceted roles of arginine in fish growth, as precursor, intermediate and hormone secretagogue.  相似文献   

13.
Many growth factors and hormones modulate the reproductive status in mammals. Among these, insulin and insulin-like growth factor I (IGF-I) regulate the development of gonadal tissues. SH2-B has been shown to interact with insulin and IGF-I receptors, although the role of SH2-B in these signals has not been clarified. To investigate the role of SH2-B, we generated mice with a targeted disruption of the SH2-B gene. Both male and female SH2-B(-/-) mice showed slight retardation in growth and impaired fertility. Female knockout mice possess small, anovulatory ovaries with reduced numbers of follicles and male SH2-B(-/-) mice have small testes with a reduced number of sperm. SH2-B(-/-) cumulus cells do not respond to either follicle-stimulating hormone or IGF-I. These data suggest that SH2-B plays a critical role in the IGF-I-mediated reproductive pathway in mice.  相似文献   

14.
There is a well-documented association between cyclic changes to food intake and the changing ovarian hormone levels of the reproductive cycle in female mammals. Limited research on appetite-controlling gastrointestinal peptides has taken place in females, simply because regular reproductive changes in steroid hormones present additional experimental factors to account for. This study focussed directly on the roles that gastrointestinal-secreted peptides may have in these reported, naturally occurring, changes to food intake during the rodent estrous cycle and aimed to determine whether peripheral changes occurred in the anorexigenic (appetite-reducing) hormones peptide-YY (PYY) and glucagon-like peptide-1 (GLP-1) in female Wistar rats (32–44 weeks of age). Total forms of each peptide were measured in matched fed and fasted plasma and descending colon tissue samples for each animal during the dark (feeding) phase. PYY concentrations did not significantly change between defined cycle stages, in either plasma or tissue samples. GLP-1 concentrations in fed plasma and descending colon tissue were significantly increased during proestrus, just prior to a significant reduction in fasted stomach contents at estrus, suggesting increased satiety and reduced food intake at this stage of the cycle. Increased proestrus GLP-1 concentrations could contribute to the reported reduction in food intake during estrus and may also have biological importance in providing the optimal nutritional and metabolic environment for gametes at the potential point of conception. Additional analysis of the findings demonstrated significant interactions of ovarian cycle stage and fed/fasted status with age on GLP-1, but not PYY plasma concentrations. Slightly older females had reduced fed plasma GLP-1 suggesting that a relaxation of regulatory control of this incretin hormone may also take place with increasing age in reproductively competent females.  相似文献   

15.
This study evaluated the effect of metabolic, endocrine and energy status on onset of ovarian cycle, days open (DO), and conception at first service in 90 multiparous Holstein cows, housed at a research farm. Dry matter intake, milk yield and body weight were measured daily from Week 2 antepartum (a.p.) to Week 20 postpartum (p.p.). Milk composition was determined four times per week and milk acetone was measured weekly. Blood samples for the determination of glucose, non-esterified fatty acids, cholesterol, creatinine, albumin, urea, beta-hydroxybutyrate, leptin, insulin, insulin-like growth factor-1, growth hormone, 3,5,3'-triiodothyronine (T(3)), and thyroxine (T(4)) were taken 2 weeks a.p., in Weeks 1-16, and 20 p.p. between 7:30 and 9:00 h. The onset of ovarian cycle was specified by weekly gynecological examination and by skim milk progesterone determination by radioimmunoassay (twice per week). Energy balance (EB) traits were calculated and expressed as accumulated negative EB from calving to EB equilibrium, EB nadir (EBN), rate of EB recovery after EBN (EBR), and time from calving to EBN and to EB equilibrium, respectively. The onset of ovarian cycle p.p. was not related to EB. However, a low degree of EBN and a fast EBR were associated with fewer DO, and EB at first service was positively related to conception. High plasma levels of T(3) and T(4) p.p. were associated with an early start of ovarian cycle, and high concentrations of glucose and cholesterol with a short calving to conception interval. Conception at first service was positively related to EB at first service and progesterone concentration 10-13 days after first service. In conclusion, thyroid hormones may play an important role in resumption of ovarian cyclicity p.p., and a good energy status enhances the chance of conception at first service and shortens DO.  相似文献   

16.
Cyclic changes in the production of the pituitary gonadotrophic hormones, LH and FSH are essential events in the maintenance of the reproductive system of female mammals. While studies have examined changes in the secretion of LH and FSH during the estrous cycle and demonstrated the importance of these hormones in regulation of ovarian development and gametogenesis, considerably less is known concerning the regulation of the biosynthesis of these hormones. Although initial studies have examined changes in LH subunit mRNA concentrations during the rat and ovine estrous cycles, no information concerning the physiological regulation of FSH beta mRNA concentrations has been available. In the present study we have examined the relationship between pituitary concentrations of LH and FSH subunit mRNAs and the serum concentrations of these gonadotropins. The results demonstrate a very different pattern of change for FSH beta subunit mRNA than that observed for alpha and LH beta subunit mRNAs. In fact, FSH beta mRNA concentration decline substantially during the preovulatory period, reaching minimal values at a time when alpha and LH beta mRNA levels are near maximal. Furthermore, this decline in FSH beta mRNA amounts occurs when serum FSH concentrations are maximal. Thus, FSH beta mRNA concentrations follow a very different pattern than that of serum FSH. In contrast, LH beta mRNA and serum LH concentrations tend to increase at the same time. These findings provide evidence that concentrations of LH beta and FSH beta mRNAs are likely regulated by different mechanisms.  相似文献   

17.
The aim was to define precisely the FSH secretion pattern in mares during the two ovulatory cycles before, and for 24 days after, the last ovulation of the season and to compare this with the profiles of other reproductive hormones and follicular growth to identify changes which may lead to the termination of follicular cycles. Jugular blood was collected every 6 h from ten light horse mares for 6 weeks in autumn. Samples were assayed for FSH, LH, prolactin, inhibin, oestrone conjugates and progesterone. Luteolysis occurred earlier and periovulatory oestrone, but not inhibin, concentrations were significantly lower in the last than in the second to last cycles. In ovulatory and anovulatory cycles, daily mean FSH concentrations were low at the expected time of ovulation and high between days 9 and 11 (day 0 = ovulation), which were usually after luteolysis. However, the periovulatory FSH nadir was prolonged in the last compared with the second to last cycles, and the difference between peak and trough values was not significant in anovulatory cycles. Between day 5 and day 8, the FSH interpulse interval was approximately 2 days, and did not vary in successive cycles. The LH profile also showed progressive changes as mares entered acyclicity; the surge terminated sooner in the last than in the second to last cycles, and failed to occur when expected in acyclicity. Sporadic prolactin pulses occurred at luteolysis in a similar proportion of ovulatory and anovulatory cycles. These results indicate that inadequate gonadotrophin stimulation in early dioestrus may be a critical event leading to suboptimal follicular and luteal development, and eventually acyclicity. Moreover, the time relationships amongst changes in pituitary and ovarian hormones and follicular growth become increasingly disrupted during the autumn transition, which may contribute to the cessation of cyclicity.  相似文献   

18.
19.
Insulin binding to circulating monocytes and erythrocytes was studied in 20 healthy volunteers and in 25 obese hyperinsulinemic newly diagnosed type-II diabetics. In type-II diabetics insulin binding to monocytes as well as to erythrocytes was significantly decreased in comparison with healthy individuals. The lowered insulin binding of the diabetics was mainly caused by a loss of receptor number. Individual analysis of the binding data, however, shows a marked discrepancy between receptor binding to circulating monocytes compared with erythrocytes. Since insulin binding to erythrocytes shows a great variation and seems to be influenced by other factors beside insulin concentrations it is suggested that insulin receptors on monocytes should be preferred for evaluation of peripheral insulin sensitivity.  相似文献   

20.
Leptin plays an important role in the regulation of food intake and thermogenesis, regulates long term energy balance and reproductive function and its concentrations are closely linked to body mass index. Leptin secretion is influenced by many factors and the age-related changes in different hormones might modify circulating leptin concentrations. Sex dimorphism in leptin concentrations has been clearly shown in previous studies and its concentrations were lower in men than in women in all decades of life. Insulin growth factor-I (IGF-I) is a peptide growth factor that is present in all types of physiologic fluids and is also produced by connective tissue cell types and its autocrine/paracrine secretion is nearly always present within tissues. There is a physiological decline of the growth hormone (GH)/IGF-I axis with ageing and in addition, insulin, thyroid hormones and the supply of dietary energy may directly regulate the circulating levels of the IGFs and growth hormone binding protein (GHBP). Furthermore, there is no doubt that GH participates in the regulation of body composition, and with advanced age there is a decrease in muscle and an increase in adiposity associated with a decline in GH and total IGF-I. The biological activities of the IGF ligands are modulated by the family of high affinity GHBP. Sex hormone binding globulin (SHBG) concentrations are thought to be regulated primarily through opposing actions of sex steroids on hepatic SHBG production, with oestrogen stimulating and androgen inhibiting SHBG production, and thyroid hormones are also a potent stimulator of SHBG production concentrations. Some studies support an independent IGFBP3 contribution to SHBG variability and these findings are compatible with the hypothesis that some of the anabolic effects ascribed to the GH/IGF axis may be caused by SHBG-mediated changes in testosterone activity or SHBG/total testosterone index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号