首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A strong correlation between intramyocellular lipid concentrations and the severity of insulin resistance has fueled speculation that lipid oversupply to skeletal muscle, fat, or liver may desensitize these tissues to the anabolic effects of insulin. To identify free fatty acids (FFAs) capable of inhibiting insulin action, we treated 3T3-L1 adipocytes or C2C12 myotubes with either the saturated FFA palmitate (C16:0) or the monounsaturated FFA oleate (C18:1), which were shown previously to be the most prevalent FFAs in rat soleus and gastrocnemius muscles. In C2C12 myotubes, palmitate, but not oleate, inhibited insulin-stimulation of glycogen synthesis, as well as its activation of Akt/Protein Kinase B (PKB), an obligate intermediate in the regulation of anabolic metabolism. Palmitate also induced the accrual of ceramide and diacylglycerol (DAG), two lipid metabolites that have been shown to inhibit insulin signaling in cultured cells and to accumulate in insulin resistant tissues. Interestingly, in 3T3-L1 adipocytes, neither palmitate nor oleate inhibited glycogen synthesis or Akt/PKB activation, nor did they induce ceramide or DAG synthesis. Using myotubes, we also tested whether other saturated fatty acids blocked insulin signaling while promoting ceramide and DAG accumulation. The long-chain fatty acids stearate (18:0), arachidate (20:0), and lignocerate (24:0) reproduced palmitate's effects on these events, while saturated fatty acids with shorter hydrocarbon chains [i.e., laurate (12:0) and myristate (14:0)] failed to induce ceramide accumulation or inhibit Akt/PKB activation. Collectively these findings implicate excess delivery of long-chain fatty acids in the development of insulin resistance resulting from lipid oversupply to skeletal muscle.  相似文献   

2.
《Phytomedicine》2014,21(5):758-765
Trigonelline is a natural alkaloid mainly found in Trigonella Foenum Graecum (fenugreek) Fabaceae and other edible plants with a variety of medicinal applications. Therefore, we investigated the molecular mechanism of trigonelline (TG) on the inhibition of adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline suppressed lipid droplet accumulation in a concentration (75 and 100 μM) dependent manner. Treatment of adipocyte with of TG down regulates the peroxisome proliferator-activated receptor (PPARγ) and CCAAT element binding protein (C/EBP-α) mRNA expression, which leads to further down regulation of other gene such as adiponectin, adipogenin, leptin, resistin and adipocyte fatty acid binding protein (aP2) as compared with respective control cells on 5th and 10th day of differentiation. Further, addition of triognelline along with troglitazone to the adipocyte attenuated the troglitazone effects on PPARγ mediated differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline might compete against troglitazone for its binding to the PPARγ. In addition, adipocyte treated with trigonelline and isoproterenol separately. Isoproterenol, a lipolytic agent which inhibits the fatty acid synthase and GLUT-4 transporter expression via cAMP mediated pathway, we found that similar magnitude response of fatty acid synthase and GLUT-4 transporter expression in trigonelline treated adipocyte. These results suggest that the trigonelline inhibits the adipogenesis by its influences on the expression PPARγ, which leads to subsequent down regulation of PPAR-γ mediated pathway during adipogenesis. Our findings provide key approach to the mechanism underlying the anti-adipogenic activity of trigonelline.  相似文献   

3.
4.
5.
Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.  相似文献   

6.
Epidemiologic studies suggest a role of dietary fat in the development of obesity. Populations that consume Western diets have a higher incidence of obesity than do those that consume a vegetarian type diet such as Asians. Because dietary fats are made up mostly of triglyceride with minor lipids such as sterols, the objective of this study was to examine the effect of different fatty acids, the main component of triglycerides, and sterols on cell growth and triglyceride accumulation in 3T3-L1 cells. These cells are being used as an in vitro model for studying obesity because upon differentiation in culture they accumulate triglycerides. Cells were seeded at 5,000 cells/cm(2) and supplemented with 0, 3, 10, or 30 microM of oleic acid, elaidic acid, or docosahexaenoic acid (DHA). Similarly, cells were supplemented with 0, 2, 8, or 16 microM of cholesterol, beta-sitosterol (SIT), or campesterol. Cell growth was measured by cell counting. Cellular triglycerides were measured by the Oil Red O method. In some experiments, fatty acids were combined with sterols and growth and triglyceride content were assessed as described. Both DHA and SIT had inhibitory effects on 3T3-L1 cell growth. However, SIT was more potent than DHA in this regard. The combination of SIT and oleic acid was the most potent in inhibiting cell growth and increasing cellular triglyceride content. It is concluded that cell growth and triglyceride accumulation in 3T3-L1 cells is influenced by fatty acid and sterols. When used alone, DHA and SIT inhibit cell growth. SIT was more effective in this process than was DHA. There was an interaction between fatty acids and sterols. The most effective combination inhibiting cell growth and triglyceride concentration was the combination of SIT and oleic acid. This combination reduced cell growth and increased triglyceride accumulation. These data suggest that diets rich in both monounsaturated fatty acids and phytosterols may play a role in controlling obesity.  相似文献   

7.
目的 :探讨游离脂肪酸是否对大鼠胰岛细胞某些胰岛素信号转导蛋白的表达产生一定的影响。方法 :分离、培养新生SD大鼠胰岛细胞 ,分别与软脂酸 (0 .2 5mmol/L)或油酸 (0 .12 5mmol/L)孵育 12、2 4、36h ,提取蛋白后用Western印迹法检测胰岛素信号转导蛋白 (cPKCα、Grb2、ERK2 )的水平。结果 :软脂酸和油酸孵育 12h后 ,大鼠胰岛细胞cPKCα、Grb2和ERK2的蛋白水平同对照组相比均未发生显著变化 (P >0 .0 5 ) ;孵育 2 4h后胰岛细胞Grb2的蛋白水平同对照组相比未发生显著变化 (P >0 .0 5 ) ;cPKCα的蛋白水平同孵育 12h后相比显著上调 (P <0 .0 5 ) ;ERK2的蛋白水平同对照组相比明显下降 (P <0 .0 5 )。软脂酸和油酸孵育 36h后大鼠胰岛细胞cPKCα的蛋白水平同对照组及孵育 12h后相比显著上调 (P <0 .0 5 ) ;而Grb2和ERK2的蛋白水平同对照组及孵育 12h后相比均明显下降 (P <0 .0 5 )。结论 :游离脂肪酸可通过上调cPKCα和降低Grb2和ERK2的蛋白水平来阻滞胰岛素的信号转导 ,这可能是游离脂肪酸引起胰岛素抵抗的机制之一  相似文献   

8.
ABSTRACT

Benzyl isothiocyanate (BITC) is an organosulfur compound derived from cruciferous vegetables and papaya seeds. In this study, we investigated the effect of BITC on the lipid accumulation in 3T3-L1 preadipocytes during adipocyte differentiation. The treatment of BITC during the differentiation-inducing stage significantly ameliorated the lipid accumulation, whereas it had no inhibitory effect during the differentiation-maintaining stage. BITC also significantly suppressed the mRNA expression of the adipocyte-specific markers, such as CCAAT/enhancer-binding protein α (C/EBPα), C/EBPβ, C/EBPδ and peroxisome proliferator-activated receptor γ. BITC significantly inhibited the phosphorylation of extracellular signal-regulated kinase phosphorylation, whereas it enhanced that of AMP-activated protein kinase. Furthermore, BITC significantly suppressed the intracellular 2-deoxyglucose uptake as well as glucose transporter 4 expression. These results suggest that inhibition of the adipocyte differentiation and glucose uptake may mainly contribute to the inhibitory effect of BITC on the lipid accumulation in 3T3-L1 preadipocytes.

Abbreviations: PPARγ: peroxisome proliferator-activated receptor γ; CEBP: CCAAT/enhancer-binding protein; GLUT4: glucose transporter 4; AMPK: AMP-activated protein kinase; ERK1/2: extracellular signal-regulated kinase 1/2; MAPK: a mitogen-activated protein kinase; ITCs: isothiocyanates; BITC: benzyl isothiocyanate; FBS: fetal bovine serum; CS: calf serum; AITC: allyl ITC; IBMX: 3-isobutyl-1-methylxanthine; LDH: lactate dehydrogenase; KRH: Krebs-Ringer-Hepes-bicarbonate; 2-DG: 2-deoxy-d-glucose  相似文献   

9.
Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells   总被引:9,自引:0,他引:9  
The effects of linoleic acid (LA), alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA) were compared to that of palmitic acid (PA), on inflammatory responses in human monocytic THP-1 cells. When cells were pre-incubated with fatty acids for 2-h and then stimulated with lipopolysaccharide for 24-h in the presence of fatty acids, secretion of interleukin (IL)-6, IL-1beta, and tumor necrosis factor-alpha (TNFalpha) was significantly decreased after treatment with LA, ALA, and DHA versus PA (P < 0.01 for all); ALA and DHA elicited more favorable effects. These effects were comparable to those for 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) and were dose-dependent. In addition, LA, ALA, and DHA decreased IL-6, IL-1beta, and TNFalpha gene expression (P < 0.05 for all) and nuclear factor (NF)-kappaB DNA-binding activity, whereas peroxisome proliferator-activated receptor-gamma (PPARgamma) DNA-binding activity was increased. The results indicate that the anti-inflammatory effects of polyunsaturated fatty acids may be, in part, due to the inhibition of NF-kappaB activation via activation of PPARgamma.  相似文献   

10.
Type 2 diabetes is due to defects in both insulin action and secretion. In an attempt to discover small molecules that stimulate glucose uptake, similar to insulin, a cell-based glucose uptake screening assay was performed using 3T3-L1 adipocytes. Shikonin, a substance originally isolated from the root of the Chinese plant that has been used as an ointment for wound healing, was thus identified. Shikonin stimulated glucose uptake and potentiated insulin-stimulated glucose uptake in a concentration-dependent manner in 3T3-L1 adipocytes. Stimulation of glucose uptake was also observed in rat primary adipocytes and cardiomyocytes. Like insulin, shikonin-stimulated glucose uptake was inhibited by genistein, a tyrosine kinase inhibitor, and enhanced by vanadate, a tyrosine phosphatase inhibitor. However, in contrast to insulin, shikonin-stimulated glucose uptake was not strongly inhibited by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). In vitro phosphorylation analyses revealed that shikonin did not induce tyrosine phosphorylation of the insulin receptor, but significantly induced both Thr-308 and Ser-473 phosphorylation of Akt. Our results suggest that in 3T3-L1 adipocytes, shikonin action is not mediated primarily via the insulin receptor/PI3K pathway, but rather via another distinct tyrosine kinase-dependent pathway leading to glucose uptake involving Akt phosphorylation.  相似文献   

11.
12.
Insulin resistance is the primary cause responsible for type 2 diabetes. Phosphatase and tensin homolog (PTEN) plays a negative role in insulin signaling and its inhibition improves insulin sensitivity. Metformin is a widely used insulin-sensitizing drug; however, the mechanism by which metformin acts is poorly understood. To gain insight into the role of PTEN, we examined the effect of metformin on PTEN expression. Metformin suppressed the expression of PTEN in an AMP-activated protein kinase (AMPK)-dependent manner in preadipocyte 3T3-L1 cells. Knock-down of PTEN potentiated the increase in insulin-mediated phosphorylation of Akt/ERK. Metformin also increased the phosphorylation of c-Jun N-terminal kinase (JNK)-c-Jun and mammalian target of rapamycin (mTOR)-p70S6 kinase pathways. Both pharmacologic inhibition and knock-down of AMPK blocked metformin-induced phosphorylation of JNK and mTOR. Knock-down of AMPK recovered the metformin-induced PTEN down-regulation, suggesting the involvement of AMPK in PTEN regulation. PTEN promoter activity was suppressed by metformin and inhibition of mTOR and JNK by pharmacologic inhibitors blocked metformin-induced PTEN promoter activity suppression. These findings provide evidence for a novel role of AMPK on PTEN expression and thus suggest a possible mechanism by which metformin may contribute to its beneficial effects on insulin signaling.  相似文献   

13.
The decrease in insulin sensitivity to target tissues or insulin resistance leads to type 2 diabetes mellitus, an insidious disease threatening global health. Numerous evidences made free fatty acids (FFAs) responsible for insulin resistance and type 2 diabetes. We demonstrate here that the damage of insulin acitivity by a free fatty acid, palmitate could be prevented by a lupinoside. An incubation of 3T3 L1 adipocytes with a FFA i.e. palmitate inhibited insulin stimulated uptake of 3H-2 deoxyglucose (2 DOG) significantly. Addition of a lupinoside purified from Pueraria tuberosa, lupinoside PA4 (LPA4) strongly prevented this inhibition. We then examined insulin signaling pathway where palmitate significantly inhibited insulin stimulated phosphorylation of Insulin receptor tyrosine kinase, IRS 1and PI3 kinase, PDK1 and Akt/PKB. LPA4 rescued this inhibition of signaling molecule by palmitate. Insulin mediated translocation of Glut4, the glucose transporter in insulin target cells, was effectively blocked by palmitate while, LPA4 waived this block. Administration of LPA4 to nutritionally induced diabetic rats significantly reduced the increase in plasma glucose. All these indicate LPA4 to be a potentially therapeutic agent for insulin resistance and type 2 diabetes.  相似文献   

14.
15.
Adiponectin, one of adipokines that is secreted from adipocytes, plays an important role in the regulation of glucose and lipid metabolism. Paradoxically, serum concentrations of adiponectin are decreased in obese and type 2 diabetic patients, although it is produced in adipose tissue. On the other hand, plasma TNF-alpha levels are increased in such subjects. In the present study, the mechanism by which adiponectin is regulated by TNF-alpha was investigated. The decreased adiponectin mRNA levels by TNF-alpha were partially recovered by treatment with a c-Jun N-terminal kinase (JNK) inhibitor or the PPAR-gamma agonist rosiglitazone in 3T3-L1 adipocytes. Interestingly, however, cotreatment with the JNK inhibitor and rosiglitazone led to a recovery of TNF-alpha-mediated adiponectin suppression to the control level. The JNK inhibitor regulated the expression of adiponectin by the increase of PPAR-gamma DNA binding activity and the recovery of its mRNA expression while rosiglitazone acted via a PPAR-gamma independent pathway which remains to be elucidated. These findings suggest that the JNK signaling pathway, activated by TNF-alpha, is involved in the regulation of adiponectin expression.  相似文献   

16.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   

17.
Summary The acute effect of insulin on 3H incorporation into lipid from glucose was measured in 3T3-L1 fatty fibroblasts cultured with and without insulin at 10 µg/ml for 7 days. Basal lipid synthesis did not differ between control cells and cells treated chronically with insulin. There was no insulin stimulation in treated cells while 3H incorporation into lipid in control cells increased from a basal level of 1.39 to 3.85 nmol/dish/90 min with a maximally-stimulating concentration of insulin. This is the first study of 3T3-L1 fatty fibroblasts which describes a lack of acute insulin responsiveness in cells exposed chronically to insulin as compared to control cells.Abbreviations KRP buffer Kreb's Ringer phosphate buffer - BSA bovine serum albumin Dr. Pohl is the recipient of Research Career Development Award AM 00183.  相似文献   

18.
Substitution of selected saturated fatty acids of the diet of 29 men and 29 women with cis or trans monounsaturated fatty acids did not affect erythrocyte membrane fluidity, insulin binding, and the membrane cholesterol and phospholipid concentrations. Subjects were fed four different controlled diets with a total fatty acid content of 39 to 40 energy percent for four 6-week periods in a Latin square design. The diets were: (1) high oleic acid (16.7 energy percent oleic); (2) moderate trans (3.8 energy percent trans fatty acids); (3) high trans (6.6 energy percent trans fatty acids); and saturated (16.2 energy percent lauric + myristic + palmitic acids). There were no significant diet effects on red cell ghost fluidity determined by fluorescence polarization of the hydrocarbon probe 1,6-diphenyl-1,3,5-hexatriene (DPH) and the polar analog trimethylammonium-DPH (TMA-DPH). There were limited diet effects on fluidity of membranes as determined with DPH-propionic acid (DPH-PA) for the men. Insulin binding was more closely associated with anisotropy of fluorescence of the surface probe, DPH-PA, than with that of the other probes, which is compatible with the localization of the insulin receptor in a domain at the cell membrane surface.  相似文献   

19.
Adipocyte size is closely related to the occurrence of diabetes, metabolic syndrome, and insulin resistance. Thus, researchers are searching for active substances that function to reduce adipocyte size. In the present study, we focused on sugar cane vinegar, Kibizu, and evaluated the function of Kibizu to reduce adipocyte size by using an in vitro model system, because people in Amami Oshima famous for longevity regularly consume Kibizu. Results showed that Kibizu treatment significantly reduced the size and number of lipid droplets in 3T3-L1 cells, relative to treatment with Kurozu, another traditional vinegar. Results of an extraction experiment suggest that the active components in Kibizu are lipophilic and hydrophobic. In addition, an in vivo experiment on rats treated with Kibizu showed that the active components were contained in large vein blood. Results of an additional in vivo experiment suggest that metabolites generated by Kibizu-treated rats are primarily contained or modified specifically in the large vein blood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号