首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to design a new Salmonella enterica vaccine, one needs to understand how naive and immune chickens interact differently when exposed to S. enterica. In this study we therefore determined the immune response of vaccinated and non-vaccinated chickens after intravenous infection with Salmonella enterica serovar Enteritidis (S. Enteritidis). Using flow cytometry we showed that 4 days post infection (DPI), counts of CD4 and B-lymphocytes did not change, CD8 and γδ T-lymphocytes decreased and macrophages and heterophils increased in the spleen. When vaccinated and non-vaccinated chickens were compared, only macrophages and heterophils were found in significantly higher counts in the spleens of the non-vaccinated chickens. The non-vaccinated chickens also expressed higher anti-LPS antibodies than the vaccinated chickens. The expression of interleukin (IL)1β, IL6, IL8, IL18, LITAF, IFNγ and iNOS did not exhibit any clear pattern in the cells sorted from the spleens of vaccinated or non-vaccinated chickens. Only IL17 and IL22 showed a differential expression in the CD4 T-lymphocytes of the vaccinated and non-vaccinated chickens at 4 DPI, both being expressed at a higher level in the non-vaccinated chickens. Due to a similar IFNγ expression in the CD4 T-lymphocytes in both the vaccinated and non-vaccinated chickens, and a variable IL17 expression oscillating around IFNγ expression levels, the IL17∶IFNγ ratio in CD4 T-lymphocytes was found to be central for the outcome of the immune response. When IL17 was expressed at higher levels than IFNγ in the non-vaccinated chickens, the Th17 immune response with a higher macrophage and heterophil infiltration in the spleen dominated. However, when the expression of IL17 was lower than that of IFNγ as in the vaccinated chickens, the Th1 response with a higher resistance to S. Enteritidis infection dominated.  相似文献   

2.
Campylobacter is the commonest bacterial cause of gastrointestinal infection in humans, and chicken meat is the major source of infection throughout the world. Strict and expensive on-farm biosecurity measures have been largely unsuccessful in controlling infection and are hampered by the time needed to analyse faecal samples, with the result that Campylobacter status is often known only after a flock has been processed. Our data demonstrate an alternative approach that monitors the behaviour of live chickens with cameras and analyses the ‘optical flow’ patterns made by flock movements. Campylobacter-free chicken flocks have higher mean and lower kurtosis of optical flow than those testing positive for Campylobacter by microbiological methods. We show that by monitoring behaviour in this way, flocks likely to become positive can be identified within the first 7–10 days of life, much earlier than conventional on-farm microbiological methods. This early warning has the potential to lead to a more targeted approach to Campylobacter control and also provides new insights into possible sources of infection that could transform the control of this globally important food-borne pathogen.  相似文献   

3.
免疫功能是影响动物个体适合度的重要因素之一,也是防御病原体入侵的重要途径,对动物的生存至关重要。种群密度与寄生物感染都能影响动物的免疫功能。本实验通过2×2析因实验设计,测定了母体密度应激+球虫感染、母体密度应激+未球虫感染、未母体密度应激+球虫感染、未母体密度应激+未球虫感染等4个处理对根田鼠粪便皮质酮、球虫感染率、白细胞总数、各型白细胞的百分比、淋巴细胞亚型计数(CD4,CD8计数)等指标。结果表明,高密度母体应激处理可显著降低CD4数量、CD4/CD8比例、淋巴细胞数、嗜酸性粒细胞数、白细胞数,母体应激与球虫的耦合可使上述免疫指标进一步降低,说明母体密度应激和球虫感染对于根田鼠的免疫具有负的叠加效应。  相似文献   

4.
Dendritic cells (DC) play a central role in immune responses by presenting antigenic peptides to CD4+ T cells through MHCII molecules. Here, we demonstrate a TRIF-GEFH1-RhoB pathway is involved in MHCII surface expression on DC. We show the TRIF (TIR domain-containing adapter inducing IFNbeta)- but not the myeloid differentiation factor 88 (MyD88)-dependent pathway of lipopolysaccharide (LPS)-signaling in DC is crucial for the MHCII surface expression, followed by CD4+ T-cell activation. LPS increased the activity of RhoB, but not of RhoA, Cdc42, or Rac1/2 in a manor dependent on LPS-TRIF- but not LPS-Myd88-signaling. RhoB colocalized with MHCII+ lysosomes in DC. A dominant-negative (DN) form of RhoB (DN-RhoB) or RhoB's RNAi in DC inhibited the LPS-induced MHCII surface expression. Moreover, we found GEFH1 associated with RhoB, and DN-GEFH1 or GEFH1's RNAi suppressed the LPS-mediated RhoB activation and MHCII surface expression. DN-RhoB attenuated the DC's CD4+ T-cell stimulatory activity. Thus, our results provide a molecular mechanism relating how the MHCII surface expression is regulated during the maturation stage of DC. The activation of GEFH1-RhoB through the TRIF-dependent pathway of LPS in DC might be a critical target for controlling the activation of CD4+ T cells.  相似文献   

5.
Teng QY  Zhou JY  Wu JJ  Guo JQ  Shen HG 《FEBS letters》2006,580(17):4274-4281
To identify chicken IL-2R alpha chain (chCD25), the cDNA of chCD25 was cloned and mapped onto chicken chromosome 1. The polyclonal and monoclonal antibodies raised from the recombinant chCD25 specifically bound to the cell surface of splenic mononuclear cells (SMC) and inhibited chicken IL-2-dependent proliferation of T cells. Flow cytometry analysis revealed that chCD25 molecules could be expressed on the surface of monocytes/macrophages, thrombocytes, CD4+ and CD8+ cells as well as tissue cells. Importantly, the CD4+CD25+ and CD8+CD25+ cells were upregulated dramatically in chickens infected with H9N2 avian influenza virus. These results confirm that the cloned cDNA is the nucleotide sequence of chicken IL-2R, and suggest that chicken CD4+CD25+ and CD8+CD25+ cells may play an important role in immune responses induced by H9N2 virus, and the monoclonal antibodies to chCD25 may be useful for investigating biological functions of chicken regulatory T cells.  相似文献   

6.
肠出血性大肠杆菌O157:H7监测及分析   总被引:3,自引:0,他引:3  
为了了解长春地区动物和人感染肠出血性大肠杆菌O157H7状况,建立流行病学监测网.采集长春市动物养殖场动物粪便和腹泻病人便样进行监测.结果在牛粪和鸡粪中共检出2株O157H7大肠杆菌.可见,在长春地区存在肠出血性大肠杆菌O157H7菌潜在污染的威胁,需要加强监测力度.  相似文献   

7.
B cell-deficient mice are susceptible to infection by Pneumocystis carinii f. sp. muris (PC). To determine whether this susceptibility is due to a requirement for B cells to prime T cells, we compared CD4 T cell responses to PC in bone marrow chimeric mice that express MHC class II (MHCII) on all APCs (wild-type (WT) chimeras) and in bone marrow chimeric mice that express MHCII on all APCs except B cells (MHCII(-/-) chimeras). Although PC was rapidly cleared by WT chimeric mice, PC levels remained high in chimeric mice that lacked MHCII on B cells. In addition, although T cells were primed in the draining lymph nodes of MHCII(-/-) chimeric mice, the number of activated CD4 T cells infiltrating the lungs of these mice was reduced relative to the number in the lungs of WT chimeras. We also adoptively transferred purified CD4 T cells from the draining lymph nodes of PC-infected normal or B cell-deficient mice into SCID mice. Mice that received CD4 cells from normal mice were able to mount a response to infection in the lungs and clear PC. However, mice that received CD4 cells from B cell-deficient mice had a delayed T cell response in the lungs and failed to control the infection. These data indicate that B cells play a vital role in generation of CD4(+) memory T cells in response to PC infection in the lungs.  相似文献   

8.
Salmonella enteritidis (SE) is a foodborne pathogen that negatively affects both animal and human health. Genetic variations in response to pathogenic SE colonization or to SE vaccination were measured in chicken resource populations. Toll-like receptor 4 (TLR4) is part of a group of evolutionarily conserved pattern recognition receptors involved in the activation of the immune system in response to various pathogens and in the innate defense against infection. In this study, TLR4 was investigated the association of TLR4 gene polymorphisms with Salmonella natural infection situation of birds from two distinct Chinese genetic breeds. One SNP G1894C in the second intron of chicken TLR4 (chTLR4) was scanned in the two hens breed, which showed significant association with Salmonella natural infection situation (P < 0.05). Genetic variations in response to pathogenic SE colonization also existed in distinct Chinese chicken resource population. In this study, mRNA expression of TLR4 was detected to investigate the association with the effect of artificial SE challenge in heterophil granulocytes and spleen of chicks from two distinct Chinese genetic breeds at 1, 3 and 10 day post-infection during the acute infection period. It clearly showed that young chicks’ response to SE infection was regulated by TLR4 mRNA expression. The results suggest that genetics, time, gender, and interactions among these factors, play important roles in TLR4 mRNA basic values and copies modulation of SE mediated immune response in distinct Chinese chickens.  相似文献   

9.
Infectious cercariae of Schistosoma mansoni gain entry to the mammalian host through the skin where they induce a transient inflammatory influx of mononuclear cells. Some of these cells have antigen-presenting cell function (MHCII+) and have been reported to migrate to the skin-draining lymph nodes (sdLN) where they have the potential to prime CD4+ cells of the acquired immune response. Here, in mice exposed to vaccinating radiation-attenuated schistosome larvae, which induce high levels of protective immunity to challenge infection, we describe the parasite-induced migration of Langerhans cells (LCs) from the epidermal site of immunisation to the sdLN using a specific monoclonal antibody that recognises langerin (CD207). CD207+ cells with dendritic morphology were abundant in the epidermis at all times and their migration into the dermis was detected soon after vaccination. All CD207+ LCs were MHCII+ but not all MHCII+ cells in the skin were CD207+. LCs migrated from the dermis in enhanced numbers after vaccination, as detected in dermal exudate populations recovered after in vitro culture of skin biopsies. Elevated numbers of CD207+ LCs were also detected in the sdLN from 24h to 4 days after vaccination. However, compared with other dermal-derived antigen-presenting cells that were CD207-MHCII+ or CD207-CD11c+, the relative numbers of CD207+ cells in the dermal exudate population and in the sdLN were very small. Furthermore, the migration of CD207+ cells after exposure to 'protective' radiation-attenuated, compared with 'non-protective' normal cercariae, was similar in terms of numbers and kinetics. Together, these studies suggest that CD207+ LCs are only a minor component of the antigen-presenting cell population that migrates from the epidermis and they are unlikely to be important in the priming of protective CD4+ cells in the sdLN.  相似文献   

10.
ABSTRACT: BACKGROUND: DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analysed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine. RESULTS: The overall HI antibody titer in chickens immunized with pDis/H5 + pDis/IL-15 was higher compared to chickens immunized with pDis/H5 (p < 0.05). The findings revealed that the inoculation of the 14-day-old chickens exhibited a shorter time to achieve the highest HI titer in comparison to the inoculation of the 1-day-old chickens. The cellular immunity was assessed by the flow cytometry analysis to enumerate CD4+ and CD8+ T cells in the peripheral blood. The chickens inoculated with pDis/H5 + pDis/IL-15 demonstrated the highest increase in CD4+ T cells population relative to the control chickens. However, this study revealed that pDis/H5 + pDis/IL-15 was not significant (P > 0.05) in inducing CD8+ T cells. Meanwhile, with the exception of Trial 1, the flow cytometry results for Trial 2 demonstrated that the pDis/H5 + pDis/IL-18 inoculated group was able to trigger a higher increase in CD4+ T cells than the pDis/H5 group (P < 0.05). On the other hand, the pDis/H5 + pDis/IL-18 group was not significant (P > 0.05) in modulating CD8+ T cells population in both trials. The pDis/H5 + pDis/IL-15 inoculated group showed the highest IL-15 gene expression in both trials compared to other inoculated groups (P < 0.05). Similar results were obtained for the IL-18 expression where the pDis/H5 + pDis/IL-18 groups in both trials (Table 8) were significantly higher compared to the control group (P < 0.05). However, the expressions of other cytokines remained low or undetected by GeXP assay. CONCLUSIONS: This study shows the diverse immunogenicity of pDis/H5 co-administered with chicken IL-15 and IL-18,with pDis/H5 + pDis/IL-15 being a better vaccine candidate compared to other groups.  相似文献   

11.
So far the responses of chickens to Salmonella have not been studied in vivo on a whole genome-wide scale. Furthermore, the influence of the host genetic background on gene expression responses is unknown. In this study gene expression profiles in the chicken (Gallus gallus) intestine of two genetically different chicken lines were compared, 24 h after a Salmonella enteritidis inoculation in 1-day-old chicks. The two chicken lines differed in the severity of the systemic infection. For gene expression profiles, a whole genome oligonucleotide array and a cDNA microarray were used to compare both platforms. Genes upregulated in both chicken lines after the Salmonella infection had a function in the innate immune system or in wound healing. Genes regulated after the Salmonella infection in one chicken line encoded proteins involved in inflammation, or with unknown functions. In the other chicken line upregulated genes encoded proteins involved in acute phase response, the fibrinogen system, actin polymerisation, or with unknown functions. Some of the host gene responses found in this study are not described before as response to a bacterial infection in the intestine. The two chicken lines reacted with different intestinal gene responses to the Salmonella infection, implying that it is important to use chickens with different genetic background to study gene expression responses.  相似文献   

12.
The course of infection with an attenuated strain of fowlpox virus (FPV), which is known to induce antibody-independent activation of complement via the alternative pathway, was investigated in 1- to 3-day-old chickens and 14-day-old chicken embryos by treatment with cobra venom factor (CVF). CVF was found to inhibit complement activity transiently via the alternative pathway but not via the classical pathway. In chickens treated with CVF, virus growth in the skin was enhanced, and pock lesions tended to disseminate, leading to fatal infection in some birds. Histologically, an acute inflammation at an early stage of infection (within 3 days) was inhibited, and virus content in the pock lesion was increased. In chicken embryos with immature immune capacities, CVF treatment caused changes in pock morphology from clear pocks to diffuse ones, an increase in virus content in the pock, and inhibition of cell infiltration. Thus, FPV infection was aggravated in both CVF-treated chickens and chicken embryos. These results are discussed in relation to roles of complement in the elimination of virus at an early stage of FPV infection.  相似文献   

13.
IFN-gamma is critical for innate immunity against Listeria monocytogenes (L. monocytogenes), and it has long been thought that NK cells are the major source of IFN-gamma during the first few days of infection. However, it was recently shown that a significant number of CD44highCD8+ T cells also secrete IFN-gamma in an Ag-independent fashion within 16 h of infection with L. monocytogenes. In this report, we showed that infection with other intracellular pathogens did not trigger this early IFN-gamma response and that cytosolic localization of Listeria was required to induce rapid IFN-gamma production by CD44highCD8+ T cells. Infection of C57BL/6 mice with an Escherichia coli strain expressing listeriolysin O (LLO), a pore-forming toxin from L. monocytogenes, also resulted in rapid IFN-gamma expression by CD8+ T cells. These results suggest that LLO expression is essential for induction of the early IFN-gamma response, although it is not yet clear whether LLO plays a direct role in triggering a signal cascade that leads to cytokine production or whether it is required simply to release other bacterial product(s) into the host cell cytosol. Interestingly, mouse strains that displayed a rapid CD8+ T cell IFN-gamma response (C57BL/6, 129, and NZB) all had lower bacterial burdens in the liver 3 days postinfection compared with mouse strains that did not have an early CD8+ T cell IFN-gamma response (BALB/c, A/J, and SJL). These data suggest that participation of memory CD8+ T cells in the early immune response against L. monocytogenes correlates with innate host resistance to infection.  相似文献   

14.
中国麻鸡中发现禽J亚群白血病   总被引:59,自引:0,他引:59  
首次报道了中国特有鸡种——麻鸡J亚群白血病的发病情况。山东某种鸡场饲养的中国麻鸡,于开产前出现消瘦、贫血、瘫痪等症状,死亡率达10%。经大体剖检发现,病鸡的内脏器官均弥漫性肿大,色彩斑驳,质度较硬;在胸骨内侧、小肠浆膜面和气管粘膜面出现大小不等的肿瘤结节,呈灰白色。组织学检查发现,增生的肿瘤细胞为均一的髓细胞。用禽白血病病毒J亚群(ALV_J)的特异性引物进行PCR检测,阳性率为89%(15/17);PCR产物测序,其基因序列、预期氨基酸序列与ALV_J原型株HPRS_103的同源性分别为98.05%和97.4%。用ALV_J单克隆抗体,经免疫组织化学检测发现,在肿瘤组织、肝、脾、肾、骨髓、腺胃中呈现强特异性染色。上述检测表明此髓细胞肿瘤是由ALV_J感染引起的。ALV_J麻鸡病例的发现警示:应注意中国地方种鸡的白血病净化工作。  相似文献   

15.
Viral diseases pose a significant threat to the poultry industry. However, there is currently a lack of antivirals and suitable vaccine adjuvants available to the poultry industry to combat this problem. The innate immune system is now recognised to be essential in the response to viral infection. However, in contrast to mammals, the innate immune response in chickens is relatively uncharacterised. The release of the full chicken genome sequence has accelerated the identification of genes involved in the immune response. The characterisation of these genes, including Toll-like receptors and cytokines has led to the identification of potential alternate antivirals and adjuvants.  相似文献   

16.
AIMS: To investigate the presence or absence of shiga toxin-producing Escherichia coli (STEC) in avian species in India. METHODS AND RESULTS: Faecal samples originating from 500 chicken and 25 free flying pigeons were screened for the presence of E. coli. A total of 426 (chicken, 401; pigeons, 25) E. coli strains were isolated. Of 426 E. coli strains, 387 were grouped into 77 serogroups, while 70 and 59 strains were untypable and rough, respectively. All isolates were subjected to multiplex polymerase chain reaction (m-PCR) for the detection of stx(1), stx(2), eaeA, hlyA and saa genes. None of the E. coli strains studied showed the presence of stx(1), stx(2) or their variants and saa genes. Overall 11 (2.74%) and seven (1.74%) strains from chickens possessed eaeA and hlyA genes, respectively, while as only six (1.49%) strains from chickens possessed both eaeA and hlyA genes. O9, O8, O60 and O25 serogroups were most predominant of which there were 24 (5.63%), 23 (5.39%), 23 (5.39%) and 20 (4.69%) strains, respectively. None of the isolates from pigeons showed the presence of any of the virulence genes studied. CONCLUSIONS: STEC are absent in chickens and pigeons. However, further studies are required in this direction to confirm or contradict our findings. E. coli strains originating from birds are carrying a low percentage eaeA or hlyA genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study is the first attempt to investigate STEC in chickens and free flying pigeons in India. The chickens and pigeons cannot be considered as important carrier of STEC in India.  相似文献   

17.
18.
Bacterial enumeration, histologic examination, and immunoperoxidase staining demonstrated the ability of an Escherichia coli strain associated with hemorrhagic colitis (serotype O157:H7) to colonize chicken cecae for up to 90 days postinoculation after a peroral challenge at 1 day of age. The bacteria induced mild, transient, mucous membrane damage confined to the proximal cecae of healthy, normal-appearing chickens, principally at 14 to 28 days postinoculation. Attachment, effacement, and penetration of the cecal surface epithelium by E. coli O157:H7 were observed. With the exception of splenic, hepatic, and cecal tonsil immune-related changes and cecal damage and colonization, no other organ systems or portions of the gastrointestinal tract were affected by the bacteria. Bacterial counts indicated that E. coli O157:H7 was predominantly present in the cecae (often at levels greater than 10(6) CFU/g of tissue and contents) and to a lesser extent in the colon. Our results suggest that E. coli O157:H7 colonizes chicken cecae and is passed through the colon with fecal excrement. The ability of this organism to colonize chicken cecae indicates that chickens may serve as hosts and possibly as reservoirs for E. coli O157:H7.  相似文献   

19.
Using a novel cDNA microarray prepared from sources of actively responding immune system cells, we have investigated the changes in gene expression in the target tissue during the early stages of infection of neonatal chickens with infectious bursal disease virus. Infections of two lines of chickens previously documented as genetically resistant and sensitive to infection were compared in order to ascertain early differences in the response to infection that might provide clues to the mechanism of differential genetic resistance. In addition to major changes that could be explained by previously described changes in infected tissue, some differences in gene expression on infection, and differences between the two chicken lines, were observed that led to a model for resistance in which a more rapid inflammatory response and more-extensive p53-related induction of apoptosis in the target B cells might limit viral replication and consequent pathology. Ironically, the effect in the asymptomatic neonatal infection is that more-severe B-cell depletion is seen in the more genetically resistant chicken. Changes of expression of many chicken genes of unknown function, indicating possible roles in the response to infection, may aid in the functional annotation of these genes.  相似文献   

20.

Background

The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible form of NOS (iNOS) generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis.

Methodology/Principal Findings

There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression.

Conclusions/Significance

The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1 influenza infection may provide insights for the development of new therapeutic strategies in the treatment of avian influenza infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号