首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
In their first 150 days of lactation, nine Ragusana jennets were investigated at the 'Istituto Sperimentale Zootecnico per la Sicilia' (ISZS) in Palermo, to study the effects of different milking typologies on milk production. The jennets were kept in a paddock and were fed hay ad libitum and concentrate (3.5 kg jennet/day). From post-foaling day 21, every 3 weeks individual milk amounts were recorded, and individual milk samples were collected and analyzed for the main qualitative parameters. The compared theses were: two daily milking times with 6- and 3-h intervals; and two, three and eight daily milking times with 3-h interval. The jennets were manually milked. The foals were separated from the jennets at 0800 h, and after the last milking the foals were housed with the jennets. During the day with eight milkings, the milk yield from the jennets was fed to their respective foals, through bottles. The 6-h milking interval produced more milk (+19%) per session than the 3-h interval (P 0.01). The fat content per session, with the eight-time milking frequency (P 0.001), was greater than the others. For each milking typology, the lactation stage had a similar effect on almost all the considered variables. When observing the eight-milking times, the fat content (%) increased from 1100 to 0500 h (P 0.001). The milk yield and the fat percentage produced by two-, three- and eight-milking times were positively correlated.  相似文献   

2.
The objective of the present study was to determine the effects of rumen-protected choline (RPC) supplementation on body condition, milk production and milk choline content during the periparturient period. Thirty-two Holstein cows were allocated into two groups (RPC group - with RPC supplementation, and control group - without RPC supplementation) 28 days before the expected calving. Cows were fed the experimental diet from 21 days before expected calving until 60 days of lactation. The daily diet of the RPC group contained 100 g of RPC from 21 days before calving until calving and 200 g RPC after calving for 60 days of lactation, which provided 25 g and 50 g per day choline, respectively. Body condition was scored on days -21, 7, 35 and 60 relative to calving. Milk production was measured at every milking; milk fat, protein and choline content were determined on days 7, 35 and 60 of lactation. Body condition was not affected by RPC supplementation. Milk yield was 4.4 kg higher for the group of cows receiving supplementary choline during the 60 days experimental period and 4% fat-corrected milk production was also increased by 2.5 kg/day. Milk fat content was not altered by treatment, but fat yield was increased by 0.10 kg/day as a consequence of higher milk yield in the RPC-treated group. Milk protein content tended to increase by RPC supplementation and a 0.18 kg/day significant improvement of protein yield was detected. Milk choline content increased in both groups after calving as the lactating period advanced. However, milk choline content and choline yield were significantly higher in the RPC group than in the control group. The improved milk choline and choline yield provide evidence that some of the applied RPC escaped ruminal degradation, was absorbed from the small intestine and improved the choline supply of the cows and contributed to the changes of production variables.  相似文献   

3.
Sixteen purebred Iberian (IB) sows were used in two consecutive trials to determine the efficiency of conversion of sow's milk into piglet body weight (BW) gain and the relationship between milk protein and body protein retention and between milk energy yield and body energy retention in the nursing IB piglet. In each trial, four sows were selected in order to evaluate their milk production, litter growth and nutrient balance measurements, together with four additional sows for milk sampling. Litter size was equalized to six piglets. Daily milk yield (MY) was determined weekly by the weigh-suckle-weigh technique over a 34-day lactation period. Piglets were weighed individually at birth and then weekly from day 5 of lactation. Milk samples were collected on days 5, 12, 19, 26 and 34 post partum. The comparative slaughter procedure was used to determine piglet nutrient and energy retention. One piglet from each litter was slaughtered at birth and four on the morning of day 35. Total MY was on average 5.175 ± 0.157 kg/day. The average chemical composition (g/kg) of the milk was 179 ± 4 dry matter, 53.4 ± 1.0 CP, 58.5 ± 3.8 fat, 10.4 ± 0.3 ash and 56.9 ± 2.3 lactose. Milk gross energy (GE) was 4.626 ± 0.145 MJ/kg. Milk intake per piglet tended to increase in trial 2 (832 v. 893 g/day; P = 0.066). Piglet BW gain contained (g/kg) 172.1 ± 1.3 protein, 151.5 ± 3.5 fat, 41.4 ± 0.6 ash and 635 ± 3 water and 10.127 ± 0.126 MJ GE/kg. Throughout the 34-day nursing period, the piglets grew at an average rate of 168 ± 3 g/day. The ratio of daily piglet BW gain to daily MY was 0.195 ± 0.002 g/g and the gain per MJ milk GE intake was 41.9 ± 0.5 g/MJ. The overall efficiency of protein accretion (g CP gain/g CP milk intake) was low and declined in trial 2 (0.619 v. 0.571; P = 0.016). Nutrient and energy deposition between birth and weaning were 27.4 ± 0.5 g/day protein, 24.2 ± 0.8 g/day fat and 1615 ± 40 kJ/day energy. Piglet energy requirements for maintenance were 404 kJ metabolizable energy (ME)/kg BW0.75. ME was used for growth with a net efficiency of 0.584. These results suggest that poor efficiency in the use of sow's milk nutrients rather than a shortage in milk nutrient supply might explain the low growth rate of the suckling IB piglet.  相似文献   

4.
This study aimed at comparing the effects of once-a-day (OAD) milking during the descending phase of lactation between cows from the two most common breeds in France (Holstein and Montbéliarde). This study was carried on during two successive summers on a total of 50 Holstein and 38 Montbéliarde cows. During 7 weeks, half of the cows from each breed was milked OAD while the other half was milked twice a day (TAD). The animals were also followed for the next 3 or 5 weeks when they were all milked TAD, to check for any residual effect of OAD milking. The behaviour of OAD cows was observed around milking time. The incidence of diseases, the main performance variables (milk production, milk flow rate, live weight and body condition score), the detailed composition of milk (fat, protein, lactose, somatic cells, minerals, pH, free fatty acid (FFA), nitrogen fractions and enzymes) and some technological variables (clotting time and curd firmness) were measured on all cows.Some signs of disturbance were observed in the OAD cows at the time when milking was omitted: some cows mooed, some went close to the exit of the paddock, some leaked milk prior to milking. However, these signs disappeared after 2 days. After the experimental period, the live weight and the body condition score of TAD and OAD cows did not differ significantly. OAD cows produced 4.5 kg/day less than TAD (P < 0.001), this being more marked in Holstein (5.7 kg/day, P < 0.001) than Montbéliarde (3.3 kg/day, P < 0.001) cows. The milk contents of fat, whey protein, casein, total protein and phosphorus, and its plasminogen activity, were higher with OAD cows while lactose and FFA contents, and lipoprotein lipase activity were lower, with no interaction observed with breed. During the subsequent 3 weeks, when all cows were again milked TAD, OAD cows still produced 1.7 kg/day less milk (P < 0.01) with slightly higher fat and protein content.OAD milking for 7 weeks during the descending phase of lactation decreased milk production but increased milk content of most components, with a low residual effect. Montbéliarde cows were less affected by OAD milking than Holstein cows.  相似文献   

5.
Alterations in the milk constituents throughout the lactation cycle have been studied in 20 Karan-Fries cross-bred cows (Holstein Fresian x Tharparkar) divided into two groups, viz. elite (n = 10) and non-elite (n = 10). About 100 ml of composite milk samples (from all the quarters) were collected through hand milking in sterile tubes from the day of calving at 15-day interval till 300 days of lactation cycle. Different milk constituents (viz. fat, protein, lactose, Solid not fat) were estimated by automatic milk analyzer. The daily milk yield varied significantly (p < 0.01) between group and different days of lactation cycle. Milk fat percentage of milk did not differ significantly between groups and different days of lactation cycle. Milk protein and lactose percentage did not differ significantly between groups but differed significantly (p < 0.001) between days. Solid not fat (SNF) percentage of milk was significantly (p < 0.01) higher in elite cows compared to non-elite cows and also varied significantly (p < 0.05) during different days of lactation cycle. In both the group of cows, milk protein, fat, and SNF percentage was highest and lactose percentage was lowest up to 1st week of lactation cycle and rapidly declined thereafter due to the transition of the colostrum into milk. After 2nd week of lactation, all the milk constituents under study were almost remained unaltered till the end of the cycle. The above stated investigation not only substantiates the already existing information of lactation stage-specific alteration in milk constituents but also depict the exact point of transition of these constituents during the lactation cycle so the nutritional and managemental interventions could be carried out in proper time.  相似文献   

6.
Milk yield and composition of major milk constituents were measured in captive, nursing reindeer. Registration of milk production was performed during two successive lactations (2001 and 2002). The milk yield was significantly affected by week of lactation (P<0.001) and by individual (P<0.001). The lactation curve had an asymmetrical peak 3 weeks postpartum and the milk yield at peak lactation was 983 g/day (range 595-1239). The length of lactation varied from 24 to 26 weeks and average total milk production was 99.5 kg. From peak lactation the milk production decreased linearly (P<0.001) until milk production was terminated. Mean values for content of major milk constituents were 15.5% fat, 9.9% protein and 2.5% lactose. The content of fat and protein increased markedly with the lactation stage (P<0.001), while lactose showed a slight decrease (P<0.001). The milk composition was significantly affected by stage of lactation (P<0.001). There was a marginally significant decrease in protein:fat ratio (P=0.06) as protein was substituted by fat with stage of lactation. The caloric value of the milk averaged 8.7 kJ/g and increased significantly with the stage of lactation (P<0.001). The overall increase in milk gross energy content during lactation was 67.6%. The energy output averaged 7996 kJ/day at peak lactation and decreased significantly during the course of lactation (P=0.002).  相似文献   

7.
Paratuberculosis impairs productivity of infected dairy cows because of reduced milk production and fertility and enhanced risk of culling. The magnitude of the milk yield depression in individual cows is influenced by factors such as parity, the stage of the disease and the choice of test used. The objectives of this case–control study were to substantiate the influence of the different levels of the within-herd prevalence (WHP) on individual milk yield of fecal culture (FC)-positive cows (FC+) compared with FC-negative herd-mates (FC−), and to estimate the magnitude of the deviation of the milk yield, milk components and somatic cell count (SCC) in an FC-based study. Of a total of 31 420 cows from 26 Thuringian dairy herds tested for paratuberculosis by FC, a subset of 1382 FC+ and 3245 FC− with milk recording data were selected as cases and controls, respectively. The FC− cows were matched for the same number and stage of lactation (±10 days in milk) as one FC+ from the same herd. Within a mixed model analysis using the fixed effects of Mycobacterium avium ssp. paratuberculosis (MAP) status, lactation number, days in milk, prevalence class of farm and the random effect of farm on milk yield per day (kg), the amount of fat and protein (mg/dl) and lactose (mg/dl) as well as the SCC (1000/ml) were measured. On the basis of least square means, FC+ cows had a lower test-day milk yield (27.7±0.6 kg) compared with FC− (29.0±0.6 kg), as well as a lower milk protein content and a slightly diminished lactose concentration. FC status was not associated with milk fat percentage or milk SCC. In FC+ cows, reduction in milk yield increased with increasing WHP. An interaction of FC status and farm was found for the test-day milk yield, and milk protein percentage, respectively. We conclude that the reduction in milk yield of FC+ cows compared with FC− herd-mates is significantly influenced by farm effects and depends on WHP class. Owners of MAP-positive dairy herds may benefit from the reduction in WHP not only by reducing number of infected individuals but also by diminishing the individual losses in milk production per infected cow, and therefore should establish control measures.  相似文献   

8.
Development and long-term retention of replacement beef females in a semi-arid environment are of a major concern for extensive livestock producers. Furthermore, the demand of not only producing a thriving, healthy calf, but having sufficient milk to support that first calf is essential. To address this issue, we conducted a 3-year study measuring milk production and milk constituent yields in primiparous beef heifers (n=48; 16/year reared under two different feeding regimens) raising steer calves. Cows received 1.8 or 1.2 kg/day winter supplementation for ~80 day before parturition and their heifer calves were then randomly assigned to heifer development treatments that provided ad libitum (AL) or 80% (less than ad libitum (LAL)) of ad libitum feed post weaning. Heifers developed on the AL treatment also received 1.8 kg/day winter supplementation for life, whereas heifers developed on the LAL treatment received 1.2 kg/day winter supplementation for life. Milk production of primiparous cows was measured with a portable milking machine every other week from days 27 to 125 postpartum. Milk yield for the 125-day lactation period was calculated from area under the lactation curve approximated by trapezoidal summation. The ANOVA model included in utero winter nutrition, post-weaning heifer development treatment, year and their interaction. Heifers subjected to the AL treatment reached peak milk yield ~12.3 day later (P=0.02) than heifers receiving LAL treatment. In addition, an in utero nutrition×post-weaning heifer treatment×year interaction existed (P⩽0.04) for milk peak yield, average daily milk yield (kg/day) and nutrient composition (protein, lactose, fat, solids non-fat, g/day). These interactions manifest as changes in magnitude and rank across the 3 years of the study. Livestock production in extensive environments is subject to variations in seasonal precipitation patterns and quality and quantity of grazeable forage and these fluctuations have a large impact on milk yield. In summary, the gestational nutritional environment of a heifer’s mother may interact with the heifer’s nutrient consumption during post-weaning growth and the current year to trigger variation in year-to-year milk production.  相似文献   

9.
The time constraints of the classic twice-daily milking routine are less easily endured by individual dairy farmers, because of their impact on quality of life. Our aim was to evaluate milk production responses by dairy cows milked twice daily at contrasting intervals. In experiments 1 (20 cows) and 2 (28 cows), four milking regimes were compared during a 3-week period beginning after the peak of lactation. Three groups of five cows were milked twice daily (TDM) with milking intervals of 11 : 13, 7 : 17 and 3 : 21 h in experiment 1, and three groups of seven cows at 11 : 13, 5 : 19 and 2.5 : 21.5 h in experiment 2. One group (five and seven cows respectively) was milked once daily (ODM) in each experiment. In experiment 3 (three groups, 12 cows per group), one group was milked at 10 : 14 h and one at 5 : 19 h, and the third group once daily. Milking treatments began during the second week of lactation and continued for an average of 23 weeks. In experiments 1 and 2, daily milk yields were reduced by 4.1%, 11.5% and 28%, for the 5 : 19, 3 : 21 and ODM milking treatments compared with the 11 : 13 h interval. In experiment 3, the decrease in daily milk yields for 5 : 19 h and ODM was 10% and 40% compared with the 10 : 14 h time interval. In the average daily milk, fat and protein contents and somatic cell counts were not different between the TDM groups, and the ODM group had (or tended to have) a higher fat and protein content. For a given milking, milk fat content decreased from about 60 to 32 g/kg as the preceding milking interval increased from 2.5 to 3 h up to 12 h. It then levelled out and even increased, mainly after 18 to 20 h. Somatic cell count showed a similar trend, and protein content did not change steadily. Dry matter intake, body weight and body condition score were not affected by contrasting milking intervals. After resumption of TDM with conventional intervals, productions of milk, fat and protein no longer differed between the TDM groups. Milk yield of previously ODM cows remained lower by 2 kg/day (P = 0.15) in experiments 1 and 2, and by 7 kg/day (P < 0.05) in experiment 3. These results suggest that TDM at contrasting intervals up to 5 : 19 h is feasible as it decreases milk yield only moderately, especially if implemented from peak of lactation.  相似文献   

10.
We examined short- and long-term effects of high milking frequency (HMF) for the first 21 days of lactation. The study included 122 Israeli Holstein cows – 32 pregnant heifers, 40 cows in second lactation and 50 cows in >second lactation. Heifers were paired according to predicted transmitting ability and cows according to energy-corrected milk (ECM) production, age, days in milk and expected calving date. Thin cows (body condition score <2.75) were not included. One cow from each pair was arbitrarily allocated to a control group milked three times daily (3× milking cows) and the counterpart to an experimental group milked six times daily for the first 21 days of lactation and then three times daily for the rest of the lactation (6× milking cows). During the first 21 days of lactation, 6× milking cows produced 9.3 kg more milk (26.5%) and 7.16 kg more ECM (19%) than the 3× milking cows. The higher milk production persisted throughout the entire lactation (305 days), as reflected by treatment×age interaction showing higher milk production for the first and second (7%) but not >second lactation cows relative to their control counterparts (−0.37%); ECM production was also higher in 6× milking first and second lactation (7.6% and 5%, respectively) but not for >second lactation cows. Furthermore, HMF had long-lasting effects, expressed as significantly higher milk production through the succeeding lactation in the previous first lactation cows (10%); a tendency toward significance in the second lactation cows relative to the controls (4.7%), but a deleterious effect on the >second lactation cows, reflected by lower milk production (−5.25%) than in controls; similar patterns were found for the ECM. For the entire 305 days of lactation, fat and protein yields were higher for first and second lactation cows, whereas protein yield for >second lactation cows was lower in the 6× milking v. control group. Given that HMF during the first 21 days of first or second lactation increases milk and ECM yields throughout the concurrent and successive lactation with no adverse effect on energy balance, mastitis, metabolic diseases or reproduction, it seems to be economically beneficial. However, caution should be paid for >second lactation cows due to absence of significant effect in the entire of the first HMF applied lactation and the deleterious effect in the succeeding lactation.  相似文献   

11.
Selection for prolificacy in sows has resulted in higher metabolic demands during lactation. In addition, modern sows have an increased genetic merit for leanness. Consequently, sow metabolism during lactation has changed, possibly affecting milk production and litter weight gain. The aim of this study was to investigate the effect of lactational feed intake on milk production and relations between mobilization of body tissues (adipose tissue or skeletal muscle) and milk production in modern sows with a different lactational feed intake. A total of 36 primiparous sows were used, which were either full-fed (6.5 kg/day) or restricted-fed (3.25 kg/day) during the last 2 weeks of a 24-day lactation. Restricted-fed sows had a lower milk fat percentage at weaning and a lower litter weight gain and estimated milk fat and protein production in the last week of lactation. Next, several relations between sow body condition (loss) and milk production variables were identified. Sow BW, loin muscle depth and backfat depth at parturition were positively related to milk fat production in the last week of lactation. In addition, milk fat production was related to the backfat depth loss while milk protein production was related to the loin muscle depth loss during lactation. Backfat depth and loin muscle depth at parturition were positively related to lactational backfat depth loss or muscle depth loss, respectively. Together, results suggest that sows which have more available resources during lactation, either from a higher amount of body tissues at parturition or from an increased feed intake during lactation, direct more energy toward milk production to support a higher litter weight gain. In addition, results show that the type of milk nutrients that sows produce (i.e. milk fat or milk protein) is highly related to the type of body tissues that are mobilized during lactation. Interestingly, relations between sow body condition and milk production were all independent of feed level during lactation. Sow management strategies to increase milk production and litter growth in modern sows may focus on improving sow body condition at the start of lactation or increasing feed intake during lactation.  相似文献   

12.
Automatic milking systems (AMS), or milking robots, are becoming widely accepted as a milking technology that reduces labour and increases milk yield. However, reported amount of labour saved, changes in milk yield, and milk quality when transitioning to AMS vary widely. The purpose of this study was to document the impact of adopting AMS on farms with regards to reported changes in milking labour management, milk production, milk quality, and participation in dairy herd improvement (DHI) programmes. A survey was conducted across Canada over the phone, online, and in-person. In total, 530 AMS farms were contacted between May 2014 and the end of June 2015. A total of 217 AMS producers participated in the General Survey (Part 1), resulting in a 41% response rate, and 69 of the respondents completed the more detailed follow-up questions (Part 2). On average, after adopting AMS, the number of employees (full- and part-time non-family labour combined) decreased from 2.5 to 2.0, whereas time devoted to milking-related activities decreased by 62% (from 5.2 to 2.0 h/day). Median milking frequency was 3.0 milkings/day and robots were occupied on average 77% of the day. Producers went to fetch cows a median of 2 times/day, with a median of 3 fetch cows or 4% of the herd per robot/day. Farms had a median of 2.5 failed or incomplete milkings/robot per day. Producers reported an increase in milk yield, but little effect on milk quality. Mean milk yield on AMS farms was 32.6 kg/cow day. Median bulk tank somatic cell count was 180 000 cells/ml. Median milk fat on AMS farms was 4.0% and median milk protein was 3.3%. At the time of the survey, 67% of producers were current participants of a DHI programme. Half of the producers who were not DHI participants had stopped participation after adopting AMS. Overall, this study characterized impacts of adopting AMS and may be a useful guide for making this transition.  相似文献   

13.
Abstract

In order to determine the effects of a varied level of dietary energy intake during pregnancy and lactation on milk yield and composition, first, second and fourth parity sows (Large White × German Landrace) were provided with energy at a level of either: (i) 100% of ME requirement (MEreq) during pregnancy and lactation, (ii) 120% MEreq during pregnancy and 80% during lactation, and (iii) 80% MEreq during pregnancy and 120% during lactation. In spite of equal target levels feed analysis revealed that gestating first parity sows with 120/80 treatment combination and lactating sows of 80/120 treatment combination received 25, and 11 – 17% more digestible N than in the respective 100/100 treatment combination. Irrespective of this 120/80 sows responded with the highest milk DM, fat, and energy contents, and the lowest lactose concentrations whereas protein levels where not affected, irrespective of parity (p < 0.05). Milk yield of sows in 1st and 4th lactation was 85 and 106% of that in 2nd lactation, respectively. Average milk composition was 18.1% DM, 4.9% protein, 6.8% fat, 5.6% lactose, and 0.8% ash. Milk composition changes ceased at day 7 of lactation with a reduction of milk GE and protein, and an increase of lactose content. Concentrations of threonine, arginine, valine, leucine, tyrosine, phenylalanine, cystine, and tryptophan, as well as stearic, oleic, and linoleic acid were higher in colostrum than in milk at later lactation stages. In contrast, laurine, myristic, palmitic, and palmitoleic acids were lower concentrated in colostrum. In conclusion, these results illustrate the importance of body reserve mobilization for milk production in sows and indicate that low energy supply during gestation cannot be compensated by higher energy supply during lactation.  相似文献   

14.
Breed additive and non-additive effects, and genetic parameters of lactation milk yield (LYD), 305-day milk yield (305YD), lactation length (LL), milk yield per day of lactation (DM) and lifetime milk yield (LTYD) were estimated in Ethiopian Boran cattle and their crosses with Holstein in central Ethiopia. The data analyzed included 2360 lactation records spread over 15 years. Ethiopian Boran cattle were consistently inferior (P < 0.01) to the Ethiopian Boran-Holstein crosses for the dairy traits studied. When the crosses were compared, LYD, 305YD and DM were higher (P < 0.01) for 75% and 87.5% crosses compared to 50% and 62.5% ones. However, the 50% crosses had higher (P < 0.01) LTYD than the other genetic groups. The individual additive genetic breed differences for milk production traits were all significant (P < 0.01). The estimates, in favor of Holstein, were 2055 ± 192 kg for LYD, 1776 ± 142 kg for 305YD, 108 ± 24 days for LL, 5.9 ± 0.5 kg for DM and 3353 ± 1294 kg for LTYD. Crossbreeding of the Holstein with the Ethiopian Boran resulted in desirable and significant (P < 0.01) individual heterosis for all milk production traits. The heterosis estimates were, 529 ± 98, 427 ± 72 kg, 44 ± 12 days 1.47 ± 0.23 kg and 3337 ± 681 kg, for LYD, 305YD, LL, DM and LTYD, respectively. The maternal heterotic effects were non-significant (P > 0.05) for all traits. Heritabilities of LYD, 305YD, LL, DM and LTYD for Ethiopian Boran were 0.20 ± 0.03, 0.18 ± 0.03, 0.26 ± 0.03, 0.13 ± 0.03 and 0.02 ± 0.04, respectively. The corresponding estimates for crosses were 0.10 ± 0.002, 0.11 ± 0.003, 0.63 ± 0.02, 0.45 ± 1.05 and 0.24 ± 0.11, respectively. Selection within each of the genetic groups and crossbreeding should substantially improve the milk production potential of the Ethiopian Boran breed under such production system.  相似文献   

15.
Grazing pastures to low post-grazing sward heights (PGSH) is a strategy to maximise the quantity of grazed grass in the diet of dairy cows within temperate grass-based systems. Within Irish spring-calving systems, it was hypothesised that grazing swards to very low PGSH would increase herbage availability during early lactation but would reduce dairy cow performance, the effect of which would persist in subsequent lactation performance when compared with cows grazing to a higher PGSH. Seventy-two Holstein–Friesian dairy cows (mean calving date, 12 February) were randomly assigned post-calving across two PGSH treatments (n = 36): 2.7 cm (severe; S1) and 3.5 cm (moderate; M1), which were applied from 10 February to 18 April (period 1; P1). This was followed by a carryover period (period 2; P2) during which cows were randomly reassigned within their P1 treatment across two further PGSH (n = 18): 3.5 cm (severe, SS and MS) and 4.5 cm (moderate, SM and MM) until 30 October. Decreasing PGSH from 3.5 to 2.7 cm significantly decreased milk (−2.3 kg/cow per day), protein (−95 g/day), fat (−143 g/day) and lactose (−109 g/day) yields, milk protein (−1.2 g/kg) and fat (−2.2 g/kg) concentrations and grass dry matter intake (GDMI; −1.7 kg dry matter/cow per day). The severe PGSH was associated with a lower bodyweight (BW) at the end of P1. There was no carryover effect of P1 PGSH on subsequent milk or milk solids yields in P2, but PGSH had a significant carryover effect on milk fat and lactose concentrations. Animals severely restricted at pasture in early spring had a higher BW and slightly higher body condition score in later lactation when compared with M1 animals. During P2, increasing PGSH from 3.5 to 4.5 cm increased milk and milk solids yield as a result of greater GDMI and resulted in higher mean BW and end BW. This study indicates that following a 10-week period of feed restriction, subsequent dairy cow cumulative milk production is unaffected. However, the substantial loss in milk solid yield that occurred during the period of restriction is not recovered.  相似文献   

16.
Differences between production systems based on grazing and browsing vs. use of harvested feedstuffs in confinement largely depend on specific feedstuffs and plants available and being consumed. Low forage nutrient ingestion should have relatively greater impact on tissue mobilization than milk production in early than later periods of lactation, with a transition to proportionally greater change in milk production in late lactation. However, low body condition at kidding would limit tissue energy mobilization and restrict impact of level of nutrient intake to milk yield and, likewise, tissue mobilization would be less with one vs. two or three milkings per day. As lactation advances after freshening, fat and protein levels decrease with increasing milk yield, and when production declines in mid- to late lactation, fat and protein concentrations increase. Milk production generally peaks at a parity of 3 or 4, thereafter declining slowly. Elevated somatic cell count alone in dairy goats is not a valid indication of mammary infection. Extended lactations offer opportunities to minimize or avoid seasonal fluctuations in milk production and lessen production costs. If differences in performance between suckled and machine-milked dairy goats occur, they may be restricted to or of greater magnitude during the suckling period compared with post-weaning, and differences in milk yield will either be absent or less with one kid compared with greater litter sizes. The magnitude of effects of milking frequency on milk yield is less for goats of low vs. high production potential and with low vs. high diet quality. Likewise, the effect of milking frequency is greater in early and mid-lactation when yield is higher than in late lactation, along with a shorter period of peak production with one vs. two daily milkings. Physical form of the diet can affect production and composition of goat milk, although effects appear of smaller magnitude than in dairy cattle. When tissue is mobilized to support milk production in early lactation, levels of C18:0 and C18:1 cis in milk increase and levels of medium-chain fatty acids decline. Effects of elevated levels of dietary fatty acids on specific long-chain fatty acids in milk and milk products vary with the fatty acid profile of fat sources used.  相似文献   

17.
Lactose percentage (LP) in milk is currently determined in most herd-testing schemes, and globally, it is usually routinely recorded in the framework of the official milk recording procedures. However, few studies have investigated the phenotypic and genetic variability of this component. Data used in the present paper consisted of 59 811 test-day records from 4355 Holstein cows in 266 herds. Heritabilities of LP and lactose yield (LY) were estimated through single-trait repeatability animal models, whereas genetic and phenotypic correlations of LP and LY with milk composition and production traits, somatic cell score and milk freezing point were estimated using bivariate models. Fixed effects included in the analyses were herd-test-date, season of calving, parity, stage of lactation and the interaction between parity and stage of lactation. Random effects were animal additive genetic, within and across lactation permanent environment and the residual. Lactation curves of LP and LY increased from parturition to the peak of lactation and decreased thereafter, mirroring the typical curve of milk yield. Lactose percentage was greater in first- than later-parity cows. Heritabilities of LP and LY were 0.43±0.03 and 0.14±0.02, respectively, and LP and protein percentage were the most repeatable traits. Genetic correlations (ra) of LP with somatic cell score, LY and milk freezing point were −0.22±0.08, 0.28±0.08 and −0.46±0.05, respectively. Genetic relationships of LY with milk yield (ra=0.97±0.00), fat percentage (ra=−0.71±0.06), protein percentage (ra=−0.57±0.06) and protein yield (ra=0.64±0.06) were moderate to strong. Results suggest that milk LP could be considered in breeding strategies to accelerate the gain of correlated low heritable traits. Further research is needed to evaluate the feasibility of including LP in the selection index of Italian Holstein population to address country-specific needs and market demands.  相似文献   

18.
Automatic milking systems have made possible the separation of high- and low-quality milk at the udder quarter level during the milking process. The aim of this study was to investigate the composition and yield of milk from individual udder quarters to determine whether deteriorated milk composition occurs in udders that are assumed to be healthy and whether quarters with high-quality milk are found in udders with high milk somatic cell count (SCC). Milk samples were collected on one occasion from 90 cows at udder quarter level and cow composite level. The milk was analyzed for content of total protein, whey protein, casein, fat, lactose, citric acid and SCC; milk yield was registered. The cows were divided into three groups depending on the SCC of their composite milk. Cows in group 1, cow composite SCC < 100 000 cells/ml, were assumed to have healthy udders. However, instances of increased SCC and decreased milk quality were discovered in one or more udder quarters of approximately 30% of the group. Cows in group 2, cow composite SCC of 100 000 to 300 000 cells/ml, and group 3, cow composite SCC > 300 000 cells/ml, were assumed to have affected udders. However, the majority of these cows had one or more udder quarters in which increased SCC and deteriorated milk quality were not detected. Calculations of bulk-tank milk values, when separation of milk from affected udder quarters was performed, indicate that SCC changes to a much greater degree compared to the other milk components. These results show that milk from affected udder quarters suffers compositional changes, but calculations of simulated separation indicate that the compositional changes in bulk-tank milk are small. The effect of separation of milk from individual udder quarters on bulk-tank milk needs to be further studied.  相似文献   

19.
Effects of a dietary lipid supplement containing calcium salts of fatty acids and methionine hydroxy analogue on plasma prostaglandin F2alpha (PGF2alpha) metabolite (PGFM) and milk fatty acid profiles were examined in 40 late lactation, nonpregnant, Holstein-Friesian cows for a period of 70 days. Effects on milk production, milk composition, and blood metabolites were also examined. Cows were paired on the basis of lactation number (first lactation, n = 8; second lactation, n = 32) and randomly assigned from within pairs to one of two dietary treatments: unsupplemented control (C) or 400 g per cow per day of the lipid supplement (S). Cows receiving the supplement had higher (P < 0.05) total milk production, total fat production (kg), and total lactose production (kg). Plasma cholesterol was significantly higher (P < 0.01) after 30 days of treatment in cows receiving the supplement. Cows receiving the supplement had lower (P < 0.01) concentrations of short chain milk fatty acids (C4:0 to C14:1) and higher concentrations of long chain fatty acids (C18:1 and C18:2; P < 0.01) than control animals. Oxytocin-induced prostaglandin release on Day 16 postovulation was increased (P < 0.01) in cows receiving the supplement. In conclusion, supplementation with calcium salts of fatty acids and methionine hydroxy analogue significantly increased milk yield and plasma PGFM.  相似文献   

20.
The milk production of dairy goats under various regimes of mother-young contact from day 4 post partum were studied during the first 2 months of lactation, together with the prolactin (PRL) and growth hormone (GH) responses to udder stimulation. In the control group, 13 goats and their kids were left in permanent contact and did not undergo milking. In two additional groups, goats were machine milked once a day in the morning (at 0800 h) and kids were allowed 10 hours (from 1000 to 2000 h; 10H group, n = 11) or 5 h (from 1000 to 2000 h; 5H group, n = 11) of mother-young interaction per day. In the last group (MO, n = 10), mothers were permanently separated from their kids on day 4 post partum and milked once a day. Milk production during a 24-h period at 37 days post partum performed by controlled nursing and weighing of the kids (groups with kids) or by two machine milking 12 h apart (milking only group) revealed a higher production in the three groups with some mother-young contact than in the MO group. Total milk collected by milking over the 2 months of the study did not differ between the three groups that underwent milking. Kid weights at 2 months were 3.4 to 4.8 kg. lighter in the groups that underwent milking than in the control group. Hormonal profiles were significantly affected by restricted mother-young contact, with highest pre-stimulation concentrations of PRL and GH in the 5H group. Restricting mother-young contact from the first week postpartum can permit an early collection of milk without major effects on kid growth, when compared with one daily milking in goats totally separated from their young.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号