首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic parameters were estimated between current UK hill sheep breeding goals and lamb carcass composition and muscularity traits derived using X-ray computed tomography (CT). To produce these estimates, a total of 648 lambs from two hill farms were CT scanned at weaning (ca 120 days of age), over 3 years, and total weights of carcass muscle (MUSC), fat (CFAT) and bone (BONE) and internal fat (IFAT) were predicted. Previously derived muscularity indices were also calculated for the hind leg (HLMI) and lumbar (LRMI) regions, to assess muscle shape. Data for current breeding goals (lamb performance and maternal traits) were also included from a total of 10 297 lamb records and 12 704 ewe records. Heritabilities were estimated for each trait and genetic and phenotypic correlations were calculated between each CT trait and other lamb or ewe traits. Moderate to high positive genetic correlations were found between CT-predicted tissue weights and breeding goals, which were also weights (lamb weaning weight, carcass weight, mature ewe weight, average weight of lambs reared by the ewe). CFAT was positively genetically correlated with ultrasound backfat depth at weaning (UFD) and subjective fatness grade at slaughter (MLCF), suggesting that carcass fat could be decreased using selection on any of these predictors. Ultrasound muscle depth at weaning (UMD) and subjective conformation score at slaughter (MLCC) had high genetic correlations with the muscularity indices (HLMI and LRMI), but correlations with MUSC were not significantly different from zero. This implies that selection to improve MLCC is likely to be increasing the 'roundness' of muscle shape in the high-priced carcass region, but having little impact on total lean meat yield. Correlations of CT traits with the other ewe traits (number of lambs weaned, number of lambs lost, longevity, fleece weight) were generally small or not significantly different from zero. The genetic parameters generated in this study can now be used in selection index calculations to assess the benefits of including lamb CT traits in future selection programmes for hill sheep.  相似文献   

2.
This paper describes an investigation of the use of computer tomography (CT) to genetically improve carcass composition and conformation in Scottish Blackface sheep. After 5 years of selection on an index designed to improve both composition and conformation (the 'CT index'), a large response was observed in the CT index, with genetic progress equivalent to 0.11 phenotypic standard deviations per year. Heritabilities for the index and for the component traits of average CT-assessed muscle area, ultrasonic muscle depth and ultrasonic fat depth were 0.41 (s.e. 0.08), 0.38 (s.e. 0.07), 0.41 (s.e. 0.05) and 0.30 (s.e. 0.05), respectively. The index was positively genetically correlated with ultrasonic muscle depth and carcass weight and negatively genetically correlated with fat class. The genetic and phenotypic correlations among ultrasonic measurements were positive and moderate. However, many of the genetic correlations tended to have large standard errors. Selection on the CT index moderately improved conformation and was successful at decreasing fat class of the carcass. Equivalent selection on live weight at ultrasound scanning would improve carcass and slaughter weight, and total price received, but would have a slightly deleterious impact on conformation score. The results of this study demonstrate that genetic improvement of carcass quality can be achieved in hill sheep using CT assessed traits.  相似文献   

3.
The potential of the composition of the forerib measured by X-ray computed tomography (CT) as a predictor of carcass composition was evaluated using data recorded on 30 Aberdeen Angus and 43 Limousin crossbred heifers and steers. The left sides of the carcasses were split into 20 cuts, which were CT scanned and fully dissected into fat, muscle and bone. Carcass and forerib tissue weights were assessed by dissection and CT. Carcass composition was assessed very accurately by CT scanning of the primal cuts (adj-R2 = 0.97 for the three tissues). CT scanning predicted weights of fat, muscle and bone of the forerib with adj-R2 of 0.95, 0.91 and 0.75, respectively. Single regression models with the weights of fat, muscle or bone in the forerib measured by CT as the only predictors to estimate fat, muscle or bone of the left carcass obtained by CT showed adjusted coefficients of determination (adj-R2) of 0.79, 0.60 and 0.52, respectively. By additionally fitting breed and sex, accuracy increased to 0.85, 0.73 and 0.67. Using carcass and forerib weights in addition to the previous predictors improved significantly the prediction accuracy of carcass fat and muscle weights to adj-R2 values of 0.92 and 0.96, respectively, while the highest value for carcass bone weight was 0.77. In general, equations derived using CT data had lower adj-R2 values for bone, but better accuracies for fat and muscle compared to those obtained using dissection. CT scanning could be considered as an alternative very accurate and fast method to assess beef carcass composition that could be very useful for breeding programmes and research studies involving a large number of animals, including the calibration of other indirect methods (e.g. in vivo and carcass video image analysis).  相似文献   

4.
The aim of the present work was (1) to study the relationship between cross-sectional computed tomography (CT) images obtained in live growing pigs of different genotypes and dissection measurements and (2) to estimate carcass composition and cut composition from CT measurements. Sixty gilts from three genotypes (Duroc×(Landrace×Large White), Pietrain×(Landrace×Large White), and Landrace×Large White) were CT scanned and slaughtered at 30 kg (n=15), 70 kg (n=15), 100 kg (n=12) or 120 kg (n=18). Carcasses were cut and the four main cuts were dissected. The distribution of density volumes on the Hounsfield scale (HU) were obtained from CT images and classified into fat (HU between −149 and −1), muscle (HU between 0 and 140) or bone (HU between 141 and 1400). Moreover, physical measurements were obtained on an image of the loin and an image of the ham. Four different regression approaches were studied to predict carcass and cut composition: linear regression, quadratic regression and allometric equations using volumes as predictors, and linear regression using volumes and physical measurements as predictors. Results show that measurements from whole animal taken in vivo with CT allow accurate estimation of carcass and cut composition. The prediction accuracy varied across genotypes, BW and variable to be predicted. In general, linear models, allometric models and linear models, which included also physical measurements at the loin and the ham, produced the lowest prediction errors.  相似文献   

5.
Sheep are an important part of the global agricultural economy. Growth and meat production traits are significant economic traits in sheep. The Texel breed is the most popular terminal sire breed in the UK, mainly selected for muscle growth and lean carcasses. This is a study based on a genome-wide association approach that investigates the links between some economically important traits, including computed tomography (CT) measurements, and molecular polymorphisms in UK Texel sheep. Our main aim was to identify single nucleotide polymorphisms (SNP) associated with growth, carcass, health and welfare traits of the Texel sheep breed. This study used data from 384 Texel rams. Data comprised ten traits, including two CT measured traits. The phenotypic data were placed in four categories: growth traits, carcass traits, health traits and welfare traits. De-regressed estimated breeding values (EBV) for these traits together with sire genotypes derived with the Ovine 50 K SNP array of Illumina were jointly analysed in a genome wide association analysis. Eight novel chromosome-wise significant associations were found for carcass, growth, health and welfare traits. Three significant markers were intronic variants and the remainder intergenic variants. This study is a first step to search for genomic regions controlling CT-based productivity traits related to body and carcass composition in a terminal sire sheep breed using a 50 K SNP genome-wide array. Results are important for the further development of strategies to identify causal variants associated with CT measures and other commercial traits in sheep. Independent studies are needed to confirm these results and identify candidate genes for the studied traits.  相似文献   

6.
Wood biodegradation is a central process at the crossroads of several disciplines. It is not only important for carbon storage in forests, but it is also important for wood conservation, wood protection and wood transformation products. Many methods already exist for studying wood biodegradation; however, they present several drawbacks, being time-consuming or destructive. Moreover, they provide little information regarding the complexity of the degradation process and the heterogeneity of the wood substrate. Based on a kinetic study of the biodegradation of Fagus sylvatica by the white-rot fungus Phanerochaete chrysosporium, we developed an X-ray computed tomography method coupled with an in-house plugin for fast, non-destructive and accurate measurement of the density variations of decaying wood. This method allowed us to examine the spatial heterogeneity of woody decayed material at the millimeter scale, providing information about the fungal pattern of degradation. Thus, X-ray computed tomography is an efficient tool that can be used for measuring the degradation of a variety of wood substrates ranging from small normalized wood blocks to fallen logs in the forest.  相似文献   

7.
The aims of this study were (1) to evaluate the ability of computed tomography (CT) to predict the chemical composition of live pigs and carcasses, (2) to compare the chemical composition of four different sex types at a commercial slaughter weight and (3) to model and evaluate the chemical component growth of these sex types. A total of 92 pigs (24 entire males (EM), 24 surgically castrated males (CM), 20 immunocastrated males (IM) and 24 females (FE)) was used. A total of 48 pigs (12 per sex type) were scanned repeatedly in vivo using CT at 30, 70, 100 and 120 kg and slaughtered at the end of the experiment. The remaining 44 were CT scanned in vivo and slaughtered immediately: 12 pigs (4 EM, 4 CM and 4 FE) at 30 kg and 16 pigs each at 70 kg and 100 kg (4 per sex type). The left carcasses were CT scanned, and the right carcasses were minced and analysed for protein, fat, moisture, ash, Ca and P content. Prediction equations for the chemical composition were developed using Partial Least Square regression. Allometric growth equations for the chemical components were modelled. By using live animal and carcass CT images, accurate prediction equations were obtained for the fat (with a root mean square error of prediction (RMSEPCV) of 1.31 and 1.34, respectively, and R2=0.91 for both cases) and moisture relative content (g/100 g) (RMSEPCV=1.19 and 1.38 and R2=0.94 and 0.93, respectively) and were less accurate for the protein (RMSEPCV=0.65 and 0.67 and R2=0.54 and 0.63, respectively) and mineral content (RMSEPCV from 0.28 to 1.83 and R2 from 0.09 to 0.62). Better equations were developed for the absolute amounts of protein, fat, moisture and ash (kg) (RMSEPCV from 0.26 to 1.14 and R2 from 0.91 to 0.99) as well as Ca and P (g) (RMSEPCV=144 and 71, and R2=0.76 to 0.66, respectively). At 120 kg, CM had a higher fat and lower moisture content than EM. For protein, CM and IM had lower values than FE and EM. The ash content was higher in EM and IM than in FE and CM, while IM had a higher Ca and P content than the others. The castrated animals showed a higher allometric coefficient for fat and a lower one for moisture, with IM having intermediate values. However, for the Ca and P models, IM presented higher coefficients than EM and FE, and CM were intermediate.  相似文献   

8.
The objective of this study was to determine the effect of lamb genotype and plane of nutrition on post-weaning lamb growth, and carcass characteristics in hill sheep systems. The lamb genotypes compared were as follows: purebred Scottish Blackface, Swaledale × Scottish Blackface, Cheviot × Scottish Blackface, Lleyn × Scottish Blackface and Texel × Scottish Blackface lambs. During the finishing period, lambs were allocated to a (i) low plane of nutrition (LP), based on a fixed allowance of dried grass pellets representing a grass-based system; (ii) high plane of nutrition (HP-cereal), with a diet consisting proportionately of 0.20 dried grass pellets : 0.80 cereal-based concentrate offered ad libitum; (iii) high plane of nutrition (HP-cereal/oil), with a diet consisting proportionately of 0.20 dried grass pellets : 0.80 cereal-based concentrate containing oilseed rape offered ad libitum. There were significant genotype × diet interactions for dry matter (DM) intake (P < 0.001), live weight gain (P < 0.05) and carcass gain (P < 0.05). On the LP diet, carcass gains were higher for Texel cross compared to Blackface and Swaledale cross lambs (P < 0.05). On both HP diets, carcass gains were lower in Blackface and Swaledale crosses compared with the Cheviot, Lleyn and Texel cross lambs (P < 0.01). Feed conversion efficiency, expressed in terms of carcass gain per unit of DM, was highest for Texel cross and Cheviot cross, lowest in Swaledale cross and Blackface and intermediate for Lleyn cross lambs (P < 0.001). Conformation classification was lowest for Swaledale cross (P < 0.05) and highest for Texel cross lambs (P < 0.001), whilst those of Blackface, Cheviot and Lleyn cross lambs were similar. Carcasses from Blackface and Lleyn cross lambs had higher fat classifications than Texel and Cheviot cross lambs (P < 0.01). Feed conversion efficiency was lowest with the LP diet compared with the HP diets, resulting in a 5-week longer finishing period and lower carcass weights, fat scores, dressing proportions and subcutaneous fat depth measurements. These results indicate that crossbreeding can have a major effect on lamb performance in the hill sheep sector. Feeding a HP increased lamb growth rates, particularly for high growth-potential genotypes, improved feed efficiency, shortened the finishing period but increased carcass fatness. Including oilseed rape in concentrate-based diets did not affect performance.  相似文献   

9.
The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound – US), ‘photon’ radiation (X-ray-computed tomography – CT, dual-energy X-ray absorptiometry – DXA) or radio frequency waves (magnetic resonance imaging – MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.  相似文献   

10.
Computed tomography (CT) scans were taken of 21 middle-aged men (mean age 46.3 years) and 20 older men (mean age 69.4 years) to measure differences in body composition with age. Overall, the older men weighed 8.2 kg less than the middle-aged men, and this difference was primarily the result of their having less lean tissue. Although fat mass (by whole body potassium counting) was only slightly less in older men, there were distributional differences in fat between the age groups. Total abdomen adipose tissue area (from CT) was similar in both groups, although the subcutaneous portion of the abdomen adipose tissue was less in the older men, and they had correspondingly more adipose tissue within the abdominal cavity. Muscle areas of the leg and arm were significantly less in the older men, as were all lean tissues of the abdomen and chest. When these data were corrected for differences in body weight with age, the results were still significant, suggesting a centripetalization and internalization of fat with age. Causes of this apparent fat redistribution and decrease of lean tissue with age were not revealed by this study and are presently unknown.  相似文献   

11.
The skull of the rare bolyeriid snake Casarea dussumieri is described in detail based on high-resolution X-ray CT data. Bolyeriids are unique in their possession of a separate suborbital ossification and a maxilla subdivided into two movably jointed parts, which may be the result of paedomorphic truncation of the development of the maxilla from multiple ossification centers. Comparison of the skull of C. dussumieri to that of larger booids suggests additional paedomorphic features including reduction of the dorsal lamina of the nasal and prefrontal and reduction of their contacts with the frontal, limited posterior extent of the posterior free process of the supratemporal, and reduction of the coronoid and splenial. The observations herein do not resolve competing phylogenetic hypotheses based on morphology, which either place tropidophiids as the sister-taxon of bolyeriids, Acrochordus and colubroids, or place bolyeriids as the sister-taxon of the other three. But these observations provide no support whatsoever for the heterodox placement of tropidophiids at the base of alethinophidian snakes, as obtained recently with molecular data.  相似文献   

12.
Intramuscular fat (IMF) % contributes positively to the juiciness and flavour of lamb and is therefore a useful indicator of eating quality. A rapid, non-destructive method of IMF determination like computed tomography (CT) would enable pre-sorting of carcasses based on IMF% and potential eating quality. Given the loin muscle (longissimus lumborum) is easy to sample, a single measurement at this site would be useful, providing is correlates well to other muscles. To determine the ability of CT to predict IMF%, this study used 400 animals and examined 5 muscles from three sections of the carcass: from the fore-section the m. supraspinatus and m. infraspinatus, from the saddle-section the m. longissimus lumborum and from the hind-section the m. semimembranosus and m. semitendinosus. The average CT pixel density of muscle was negatively associated with IMF% and can be used to predict IMF% although precision in this study was poor. The ability of CT to predict IMF% was greatest in the m. longissimus lumborum (slope −0.07) and smallest in the m. infraspinatus (slope −0.02). The correlation coefficients of IMF% between the five muscles were variable, with the highest correlation coefficients evident between muscles of the fore section (0.67 between the m. supraspinatus and the m. infraspinatus) and the weakest correlations were between the muscle of the fore and hind section. The correlation between the m. longissimus lumborum to the other muscles was fairly consistent with values ranging between 0.34 and 0.40 (partial correlation coefficient). The correlation between the proportion of carcass fat and the IMF% of the five muscles varied and was greatest in the m. longissimus lumborum (0.41).  相似文献   

13.
Dual energy X-ray absorptiometry (DEXA) is an imaging modality that has been used to predict the computed tomography (CT)-determined carcass composition of multiple species, including sheep and pigs, with minimal inaccuracies, using medical grade DEXA scanners. An online DEXA scanner in an Australian abattoir has shown that a high level of precision can be achieved when predicting lamb carcass composition in real time. This study investigated the accuracy of that same online DEXA when predicting fat and lean percentages as determined by CT over a wide range of phenotypic and genotypic variables across 454 lambs over 6 kill groups and contrasted these results against the current Australian industry standard of grade-rule (GR) measurements to grade carcasses. Lamb carcasses were DEXA scanned and then CT scanned to determine CT Fat % and CT Lean %. All phenotypic traits and genotypic information, including Australian Sheep Breeding Values, were recorded for each carcass. Residuals of the DEXA predicted CT Fat % and Lean %, and the actual CT Fat % and Lean % were calculated and tested against all phenotypic and genotypic variables. Excellent overall precision was recorded when predicting CT Fat % (R2 = 0.91, RMSE = 1.19%). Small biases present for sire breed, sire type, dam breed, hot carcass weight and c-site eye muscle area could be explained by a regression paradox; however, biases among kill group (−0.73% to 1.01% for CT Fat %, −1.48% to 0.76% for CT Lean %) and the Merino sire type (0.36% for CT Fat %, −0.73% for CT Lean %) could not be explained by this effect. Over the large range of phenotypic and genotypic variation, there was excellent precision when predicting CT Fat % and CT Lean % by an online DEXA, with only minor biases, showing superiority to the existing Australian standard of GR measurements.  相似文献   

14.
Hypotheses on total body chemical composition were tested using data from 350 Suffolk sheep grown to a wide range of live weights, and fed in a non-limiting way, or with reduced amounts of feed, or ad libitum on feeds of reduced protein content. The sheep were from an experiment where selection used an index designed to increase the lean deposition rate while restricting the fat deposition rate. Ultrasound muscle and fat depths were the only composition measurements in the index. The animals were males and females from a selection (S) line and its unselected control (C). The protein content of the lipid-free dry matter was unaffected by live weight, sex or feeding treatment with only a very small effect of genetic line (0.762 kg/kg in S and 0.753 kg/kg in C; P < 0.05). The form of the relationship between water and protein was not affected by any of the factors; in the different kinds of sheep it was consistent with no effect other than through differences in mature protein weight. The water : protein ratio at maturity was estimated as 3.45. Over the whole dataset, lipid weight (L) increased with protein weight (P) according to L = 0.3135 × P1.850. Allowing for this scaling, fatness increased on low-protein feeds, was greater in females than in males and in C than in S (P < 0.001). Lipid content (g/kg fleece-free empty body weight) was reduced by restricted feeding only in males at the highest slaughter weight (114 kg). The lines differed in lipid content (P < 0.001) with means of 265.1 g/kg for C and 237.3 g/kg for S. Importantly, there was no interaction between line and feeding treatments. A higher proportion of total body protein was in the carcass in S than in C (0.627 v. 0.610; P < 0.001). For lipid, the difference was reversed (0.736 v. 0.744; P < 0.05). The total energy content increased quadratically with slaughter weight. At a particular weight, the energy content of gain was higher in females than in males and in C than in S. Genetic selection affected body composition at a weight favouring the distribution of protein to the carcass and lipid to the non-carcass. Once allowing for effects of genetic selection, sex and feeding treatment on fatness, simple rules can be used to generate the chemical composition of sheep.  相似文献   

15.

Background

Polymer gel dosimetry has been used extensively in radiation therapy for its capability in depicting a three dimensional view of absorbed dose distribution. However, more studies are required to find less toxic and more efficient polymers for application in radiotherapy dosimetry.

Aim

The purpose of this work was to evaluate the N-isopropyl acrylamide (NIPAM) gel dosimetric characteristics and optimize the protocol for X-ray computed tomography (CT) imaging of gel dosimeters for radiation therapy application.

Material and methods

A polymer gel dosimeter based on NIPAM monomer was prepared and irradiated with 60Co photons. The CT number changes following irradiation were extracted from CT images obtained with different sets of imaging parameters.

Results

The results showed the dose sensitivity of ΔNCT (H) = 0.282 ± 0.018 (H Gy−1) for NIPAM gel dosimeter. The optimized set of imaging exposure parameters was 120 kVp and 200 mA with the 10 mm slice thickness. Results of the depth dose measurement with gel dosimeter showed a great discrepancy with the actual depth dose data.

Conclusion

According to the current study, NIPAM-based gel dosimetry with X-ray CT imaging needs more technical development and formulation refinement to be used for radiation therapy application.  相似文献   

16.
X-ray luminescence computed tomography (XLCT) uses external X-rays for luminescence excitation, which is becoming a promising molecular imaging technique with superb penetration depth and spatial resolution. To achieve the tomographic mapping of luminescence distribution, accurate optical propagation model and suitable reconstruction method are two keys for XLCT, but not satisfied. To overcome the limitation of the single proton propagation model (e.g., DE, SP3), we adopted a hybrid diffusion equation with third order simplified spherical harmonics (DE-SP3) model for XLCT. To enable fast iteration and accurate sparse reconstruction, we also integrated in the inversion optimization, with a novel Least Square QR-factorization based on the Lasso (Lasso-LSQR) algorithm. We first simulated the light propagation in various kinds of organs under DE model and SP3 model, respectively. By comparison with the Monte Carlo, these tissues can be categorized into two types, namely DE-fitted tissues that include muscle and lung, and SP3-fitted tissues including heart, kidney, liver, and stomach. According to the above classification results, we built a hybrid DE-SP3 model to more accurately describing light transport. Numerical simulations and in vivo experiments illustrated that hybrid DE-SP3 model achieves superior reconstruction performance in terms of location accuracy, and spatial resolution than DE, and less computational cost than SP3. The hybrid DE-SP3 model materializes a balance between accuracy and efficiency for XLCT.  相似文献   

17.
Obesity is associated with increased morbidity and mortality as well as reduced metrics in quality of life. Both environmental and genetic factors are associated with obesity, though the precise underlying mechanisms that contribute to the disease are currently being delineated. Several small animal models of obesity have been developed and are employed in a variety of studies. A critical component to these experiments involves the collection of regional and/or total animal fat content data under varied conditions. Traditional experimental methods available for measuring fat content in small animal models of obesity include invasive (e.g. ex vivo measurement of fat deposits) and non-invasive (e.g. Dual Energy X-ray Absorptiometry (DEXA), or Magnetic Resonance (MR)) protocols, each of which presents relative trade-offs. Current invasive methods for measuring fat content may provide details for organ and region specific fat distribution, but sacrificing the subjects will preclude longitudinal assessments. Conversely, current non-invasive strategies provide limited details for organ and region specific fat distribution, but enable valuable longitudinal assessment. With the advent of dedicated small animal X-ray computed tomography (CT) systems and customized analytical procedures, both organ and region specific analysis of fat distribution and longitudinal profiling may be possible. Recent reports have validated the use of CT for in vivo longitudinal imaging of adiposity in living mice. Here we provide a modified method that allows for fat/total volume measurement, analysis and visualization utilizing the Carestream Molecular Imaging Albira CT system in conjunction with PMOD and Volview software packages.  相似文献   

18.
Lamb live weight is one of the key drivers of profitability on sheep farms. Previous studies in Ireland have estimated genetic parameters for live weight and carcass composition traits using a multi-breed population rather than on an individual breed basis. The objective of the present study was to undertake genetic analyses of three lamb live weight and two carcass composition traits pertaining to purebred Texel, Suffolk and Charollais lambs born in the Republic of Ireland between 2010 and 2017, inclusive. Traits (with lamb age range in parenthesis) considered in the analyses were: pre-weaning weight (20 to 65 days), weaning weight (66 to 120 days), post-weaning weight (121 to 180 days), muscle depth (121 to 180 days) and fat depth (121 to 180 days). After data edits, 137 402 records from 50 372 lambs across 416 flocks were analysed. Variance components were derived using animal linear mixed models separately for each breed. Fixed effects included for all traits were contemporary group, age at first lambing of the dam, parity of the dam, a gender by age of the lamb interaction and a birth type by rearing type of the lamb interaction. Random effects investigated in the pre-weaning and weaning weight analyses included animal direct additive genetic, dam maternal genetic, litter common environment, dam permanent environment and residual variances. The model of analysis for post-weaning, muscle and fat depth included an animal direct additive genetic and litter common environment effect only. Significant direct additive genetic variation existed in all cases. Direct heritability for pre-weaning weight ranged from 0.14 to 0.30 across the three breeds. Weaning weight had a direct heritability ranging from 0.17 to 0.27 and post-weaning weight had a direct heritability ranging from 0.15 to 0.27. Muscle and fat depth heritability estimates ranged from 0.21 to 0.31 and 0.15 to 0.20, respectively. Positive direct correlations were evident for all traits. Results revealed ample genetic variation among animals for the studied traits and significant differences between breeds to suggest that genetic evaluations could be conducted on a per-breed basis.  相似文献   

19.
CLASEY, JODY L, CLAUDE BOUCHARD, LAURIE WIDEMAN, JILL KANALEY, C DAVID TEATES, MICHAEL O THORNER, MARK L HARTMAN, ARTHUR WELTMAN. The influence of anatomical boundaries, age, and sex on the assessment of abdominal visceral fat. Single-slice abdominal computed tomography (CT) scanning has been used extensively for the measurement of abdominal visceral fat (AYF). Optimal anatomical scan location and pixel density ranges have been proposed and are specifically reported to allow for the replication and standardization of AVF measurements. Standardization of the anatomical boundaries for CT measurement of AVF and the influence of age and gender on results obtained with different boundary locations have received much less attention. To determine the influence of three boundary analysis methods (AVF-1, AVF-2, and AVF-3) on the measurement of AVF by CT, 54 older (60 years to 79 years) and 37 younger (20 years to 29 years) healthy men and women were examined. The measurement boundary for AVF-1 was the internal most aspect of the abdominal and oblique muscle walls, and the posterior aspect of the vertebral body. AVF-2 used fat measurements enclosed in a boundary formed by the midpoint of the abdominal and oblique muscle walls, and the most posterior aspect of the spinous process. AVF-3 used fat measurements enclosed in a boundary formed by the external border of the abdominal and oblique muscle walls, and the external border of the erector spinae. Greater AVF measures were obtained with AVF-2 and AVF-3 compared with AVF-1 (p<0.0001). These differences were greater in older compared with younger subjects (p<0.0001) and greater in women compared with men (p<0.02). The significantly greater AVF measurements obtained with AVF-2 and AVF-3 resulted from the inclusion of larger amounts of fat that are not drained by the portal circulation. This included retroperitoneal, intermuscular, and intramuscular lipid droplets, which increase with aging. On the basis of these results, we recommend the AVF-1 anatomical boundaries for the measurement of AVF in clinical investigations, particularly with older subjects. These data demonstrate the importance of precise and reproducible anatomical boundaries for the measurement of AVF, particularly in longitudinal studies.  相似文献   

20.
In this study, computed tomography (CT) technology was used to measure body composition on live pigs for breeding purposes. Norwegian Landrace (L; n = 3835) and Duroc (D; n = 3139) boars, selection candidates to be elite boars in a breeding programme, were CT-scanned between August 2008 and August 2010 as part of an ongoing testing programme at Norsvin's boar test station. Genetic parameters in the growth rate of muscle (MG), carcass fat (FG), bone (BG) and non-carcass tissue (NCG), from birth to ~100 kg live weight, were calculated from CT data. Genetic correlations between growth of different body tissues scanned using CT, lean meat percentage (LMP) calculated from CT and more traditional production traits such as the average daily gain (ADG) from birth to 25 kg (ADG1), the ADG from 25 kg to 100 kg (ADG2) and the feed conversion ratio (FCR) from 25 kg to 100 kg were also estimated from data on the same boars. Genetic parameters were estimated based on multi-trait animal models using the average information-restricted maximum likelihood (AI-REML) methodology. The heritability estimates (s.e. = 0.04 to 0.05) for the various traits for Landrace and Duroc were as follows: MG (0.19 and 0.43), FG (0.53 and 0.59), BG (0.37 and 0.58), NCG (0.38 and 0.50), LMP (0.50 and 0.57), ADG1 (0.25 and 0.48), ADG2 (0.41 and 0.42) and FCR (0.29 and 0.42). Genetic correlations for MG with LMP were 0.55 and 0.68, and genetic correlations between MG and ADG2 were -0.06 and 0.07 for Landrace and Duroc, respectively. LMP and ADG2 were clearly unfavourably genetically correlated (L: -0.75 and D: -0.54). These results showed the difficulty in jointly improving LMP and ADG2. ADG2 was unfavourably correlated with FG (L: 0.84 and D: 0.72), thus indicating to a large extent that selection for increased growth implies selection for fatness under an ad libitum feeding regime. Selection for MG is not expected to increase ADG2, but will yield faster growth of the desired tissues and a better carcass quality. Hence, we consider MG to be a better biological trait in selection for improved productivity and carcass quality. CT is a powerful instrument in conjunction with breeding, as it combines the high accuracy of CT data with measurements taken from the selection candidates. CT also allows the selection of new traits such as real body composition, and in particular, the actual MG on living animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号