共查询到20条相似文献,搜索用时 15 毫秒
1.
《Animal : an international journal of animal bioscience》2018,12(12):2489-2498
Intensive farming may involve the use of diets, environments or management practices that impose physiological and psychological stressors on the animals. In particular, early weaning is nowadays a common practice to increase the productive yield of pig farms. Still, it is considered one of the most critical periods in swine production, where piglet performance can be seriously affected and where they are predisposed to the overgrowth of opportunistic pathogens. Pig producers nowadays face the challenge to overcome this situation in a context of increasing restrictions on the use of antibiotics in animal production. Great efforts are being made to find strategies to help piglets overcome the challenges of early weaning. Among them, a nutritional strategy that has received increasing attention in the last few years is the use of probiotics. It has been extensively documented that probiotics can reduce digestive disorders and improve productive parameters. Still, research in probiotics so far has also been characterized as being inconsistent and with low reproducibility from farm to farm. Scientific literature related to probiotic effects against gastrointestinal pathogens will be critically examined in this review. Moreover, the actual practical approach when using probiotics in these animals, and potential strategies to increase consistency in probiotic effects, will be discussed. Thus, considering the boost in probiotic research observed in recent years, this paper aims to provide a much-needed, in-depth review of the scientific data published to-date. Furthermore, it aims to be useful to swine nutritionists, researchers and the additive industry to critically consider their approach when developing or using probiotic strategies in weaning piglets. 相似文献
2.
Jose L. Martinez 《Proceedings. Biological sciences / The Royal Society》2009,276(1667):2521-2530
Antibiotics are among the most valuable compounds used for fighting human diseases. Unfortunately, pathogenic bacteria have evolved towards resistance. One important and frequently forgotten aspect of antibiotics and their resistance genes is that they evolved in non-clinical (natural) environments before the use of antibiotics by humans. Given that the biosphere is mainly formed by micro-organisms, learning the functional role of antibiotics and their resistance elements in nature has relevant implications both for human health and from an ecological perspective. Recent works have suggested that some antibiotics may serve for signalling purposes at the low concentrations probably found in natural ecosystems, whereas some antibiotic resistance genes were originally selected in their hosts for metabolic purposes or for signal trafficking. However, the high concentrations of antibiotics released in specific habitats (for instance, clinical settings) as a consequence of human activity can shift those functional roles. The pollution of natural ecosystems by antibiotics and resistance genes might have consequences for the evolution of the microbiosphere. Whereas antibiotics produce transient and usually local challenges in microbial communities, antibiotic resistance genes present in gene-transfer units can spread in nature with consequences for human health and the evolution of environmental microbiota that are largely ignored. 相似文献
3.
4.
It is important to know the contributions of bacteria and fungi to decomposition in connection with both the structure of the food web and the functioning of the ecosystem. However, the extent of the competition between these groups of organisms is largely unknown. The bacterial influence on fungal growth in a soil system was studied by applying three different bacterial inhibitors – bronopol, tylosin and oxytetracycline – in a series of increasing concentrations, and comparing the resulting bacterial and fungal growth rates measured using leucine and acetate-in-ergosterol incorporation, respectively. Direct measurements of growth showed that fungi increased after adding inhibitors; the level of increase in fungal growth corresponded to that of the decrease in bacterial growth, irrespective of the bacterial inhibitor used. Similar antagonistic effects of the bacteria on fungal growth were also found after adding the bacterial inhibitors together with additional substrate (alfalfa or straw plant material). The resulting responses in bacterial and fungal growth indirectly indicated that the negative interaction between fungi and bacteria was mostly attributable to exploitation competition. The results of this study also emphasize the increased sensitivity of using growth-related, instead of biomass-based, measurements when studying bacterial and fungal interactions in soil. 相似文献
5.
Many physicochemical and biotic aspects of the soil environment determine the community composition of bacteria. In this study, we examined the effects of arbuscular mycorrhizal fungi, common symbionts of higher plants, on the composition of bacterial communities after long-term (7-8 years) enrichment culture in the presence of a plant host. We showed that the phylogeny of arbuscular mycorrhizal fungal isolates was a highly significant predictor of bacterial community composition, as assessed by cluster analysis, redundancy analysis and linear discriminant analysis of phospholipid fatty acid patterns. Numerous phospholipid fatty acids differed between the phylogenetic groupings; this pattern also held for fungal-origin phospholipid fatty acids and in a combined bacterial/fungal analysis, suggesting that categorizing phospholipid fatty acids into predominantly bacterial and fungal origin did not affect the overall outcome. The mechanisms underlying this observation could include substrate quality (and quantity) effects, interactions mediated by the host plant (e.g. rhizodeposition) and direct biotic interactions between arbuscular mycorrhizal fungi and bacterial populations. Our results suggest that aspects of arbuscular mycorrhizal fungal functions may be partially explained by the symbiosis-accompanying bacterial communities, a possibility that should be explicitly considered in studies examining the roles of arbuscular mycorrhizal fungal species diversity in soil and ecosystem processes. 相似文献
6.
7.
《生物多样性》2024,33(3)
重金属作为常见的土壤污染物, 可通过共选择作用诱导土壤微生物群落的抗生素抗性基因(antibiotic resistance genes, ARGs)的产生和扩散, 并促进ARGs在环境中持久存在。本研究建立了不同铜(Cu)浓度和镉(Cd)浓度的土壤微宇宙实验, 基于高通量测序和实时荧光定量PCR技术分析不同重金属浓度和复合污染条件下ARGs的分布特征以及土壤细菌群落对不同浓度Cu、Cd污染的响应, 旨在解析ARGs与土壤细菌群落在重金属污染土壤中的分布特征。此外, 通过探究影响ARGs变化的关键环境因子, 以期找出有效减缓环境中抗生素抗性的传播和扩散现状的途径。研究表明: 高浓度Cu (400 mg/kg)与Cd (1 mg/kg和5 mg/kg)的复合污染显著(P < 0.05)提高了土壤中抗生素抗性基因sul1、intl1、blaVIM的相对丰度, 抗生素抗性基因tetX、tetG对Cd响应最敏感, 低浓度Cd (1 mg/kg)可明显提高tetX、tetG的丰度。此外, Cu、Cd显著(P < 0.05)改变了土壤细菌群落结构, 并且使细菌群落对Cu的响应更加明显。相关性分析和网络分析表明, sul1、tetX、tetM02、blaVIM广泛分布在多个细菌门, 而ARGs的变化与细菌群落(如链霉菌属Streptomyces、慢生根瘤菌属Bradyrhizobium、BIrii41属(Polyangiales)、海无柄孢囊黏细菌属Haliangium等)的变化密切相关, 推测这些细菌可能是携带ARGs的主要宿主。 相似文献
8.
Natalie Ann Lozano-Huntelman Austin Bullivant Jonathan Chacon-Barahona Alondra Valencia Nick Ida April Zhou Pooneh Kalhori Gladys Bello Carolyn Xue Sada Boyd Colin Kremer Pamela J. Yeh 《Evolutionary Applications》2023,16(12):1901-1920
Multidrug antibiotic resistance is an urgent public health concern. Multiple strategies have been suggested to alleviate this problem, including the use of antibiotic combinations and cyclic therapies. We examine how adaptation to (1) combinations of drugs affects resistance to individual drugs, and to (2) individual drugs alters responses to drug combinations. To evaluate this, we evolved multiple strains of drug resistant Staphylococcus epidermidis in the lab. We show that evolving resistance to four highly synergistic combinations does not result in cross-resistance to all of their components. Likewise, prior resistance to one antibiotic in a combination does not guarantee survival when exposed to the combination. We also identify four 3-step and four 2-step treatments that inhibit bacterial growth and confer collateral sensitivity with each step, impeding the development of multidrug resistance. This study highlights the importance of considering higher-order drug combinations in sequential therapies and how antibiotic interactions can influence the evolutionary trajectory of bacterial populations. 相似文献
9.
10.
11.
12.
《Animal : an international journal of animal bioscience》2019,13(3):518-523
Results of recent in vitro experiments suggest that essential oils (EO) may not only influence ruminal fermentation but also modulate the absorption of cations like Na+, Ca2+ and NH4+ across ruminal epithelia of cattle and sheep through direct interaction with epithelial transport proteins, such as those of the transient receptor potential family. The aim of the current study was to examine this hypothesis by testing the effect of a blend of essential oils (BEO) on cation status and feed efficiency in lactating dairy cows. In the experiment, 72 dairy cows in mid-to-end lactation were divided into two groups of 36 animals each and fed the same mixed ration with or without addition of BEO in a 2×2 cross-over design. Feed intake, milk yield and composition, plasma and urine samples were monitored. Feeding BEO elevated milk yield, milk fat and protein yield as well as feed efficiency, whereas urea levels in plasma and milk decreased. In addition, plasma calcium levels increased significantly upon BEO supplementation, supporting the hypothesis that enhanced cation absorption might contribute to the beneficial effects of these EO. 相似文献
13.
14.
细菌生物膜是细菌生长过程中为适应生存环境而在固体表面上生长的一种与游走态细胞相对应的存在形式。只要条件允许,绝大多数细菌都可以形成生物膜。一旦形成了生物膜细菌就具有极强的耐药性,在医疗、食品、工业、军事等诸多领域给人类社会带来了严重的危害,造成巨大的经济损失。因此,细菌生物膜已成为全球关注的重大难题,也是目前科学界研究的前沿和热点。本文结合细菌生物膜研究技术的最新进展,重点介绍了几种常用生物膜发生装置及检测量化技术,并对其原理及优缺点进行了讨论。 相似文献
15.
Jose Luis Martinez María Blanca Sánchez Laura Martínez-Solano Alvaro Hernandez Leonor Garmendia Alicia Fajardo & Carolina Alvarez-Ortega 《FEMS microbiology reviews》2009,33(2):430-449
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking. 相似文献
16.
益生菌已经广泛应用于饲料和食品等工业中,但是目前仍然有许多限制因素限制其使用。本文初步探讨了生物技术特别是基因工程改造益生菌方面的研究,为益生菌的进一步研究应用提供了一定的基础。 相似文献
17.
抗生素在养殖业、医疗业及制药业的广泛应用导致环境中的细菌耐药性日益严重,环境中的抗生素及耐药细菌一旦进入人体肠道,将破坏肠道菌群稳态,对人体健康造成威胁,而残存于饮食中的环境污染物则加剧了细菌耐药造成的人体健康影响。文中在总结大量文献的基础上,阐述了细菌耐药对人体和动物肠道菌群的影响机制及其相关的机体免疫调控,以环境中影响人体肠道菌群获得耐药性的来源作为切入点,阐述抗生素和耐药细菌进入人体肠道后对人体肠道菌群结构和耐药基因组成的影响,以及与人体免疫和免疫调节相关疾病之间的相关机制,并对今后的研究方向进行了展望。 相似文献
18.
利用基因组数据和生物信息学分析方法,快速鉴定耐药基因并预测耐药表型,为细菌耐药状况监测提供了有力辅助手段。目前,已有的数十个耐药数据库及其相关分析工具这些资源为细菌耐药基因的识别以及耐药表型的预测提供了数据信息和技术手段。随着细菌基因组数据的持续增加以及耐药表型数据的不断积累,大数据和机器学习能够更好地建立耐药表型与基因组信息之间的相关性,因此,构建高效的耐药表型预测模型成为研究热点。本文围绕细菌耐药基因的识别和耐药表型的预测,针对耐药相关数据库、耐药特征识别理论与方法、耐药数据的机器学习与表型预测等方面展开讨论,以期为细菌耐药的相关研究提供手段和思路。 相似文献
19.
太湖有机聚集体上附着细菌群落结构与动态的T-RFLP分析 总被引:1,自引:0,他引:1
有机聚集体(organic aggregates),是指由浮游动(植)物的残体、粪便颗粒及各种有机碎屑、活的自养及异养微生物以及无机颗粒等由于物理的、化学的或生物的作用聚集而成的颗粒物。人们对水生态系统中有机聚集体的认识始于20世纪50年代的海洋学研究。细菌是有机聚集体最重要的组成部分之一。有机聚集体在水体中物质与能量循环中的作用很大程度上是靠附着其上的异养细菌而起作用的。目前,有机聚集体的概念在水生态系统中已被广泛接受,由于其独特的物理、化学及生物组成,以及复杂的形成、转化过程,使其在水生态系统中具有重要的生态学作用。然而,有关浅水湖泊中有机聚集体上细菌群落的研究目前尚未见报道。近年来,基于DNA多聚酶链式反应(PCR)的末端限制性片段长度多态性(T-RFLP)技术是一种新兴的研究微生物多态性的分子生物学方法。该技术由于具有快捷、高分辨率、高通量和不依赖于培养等优点而被广泛应用于微生物群落结构的时空演替研究。本研究采用T-RFLP技术,研究了太湖梁溪河入湖河口(Site A)和贡湖湾(Site B)2006年6月至2007年5月一年间有机聚集体上附着细菌群落组成的时空变化规律。T-RFLP分析检测到这两个采样点共有187个独特的末端限制性片段(T-RFs),月平均T-RFs分别42.7和44.9。t 检验显示它们没有显著性差异(P>0.05)。虽然河口的营养盐浓度要显著高于贡湖湾(P<0.01),T-RFLP 结果表明,太湖中营养盐的浓度已经不是有机聚集体上附着细菌多样性的限制因子。聚类分析显示,除了春季外,河口和贡湖湾有机聚集体上细菌群落结构有明显的不同。在T-RFLP分析附着细菌群落组成及季节变化的基础上,采用多元统计方法研究环境因子与附着细菌群落组成变化的相关性。典型对应分析(CCA)结果表明诸多环境因子中,DIP、DIN 和水温与有机聚集体上细菌群落结构的变化具有显著的相关性 (P<0.05)。 相似文献
20.
[目的]为详细了解水稻不同组织内生细菌群落多样性。[方法]对宁粳43号内生细菌的总DNA提取后,采用高通量测序技术对水稻内生细菌的16S rRNA基因进行了序列测定,分析了水稻不同组织部位内生细菌群落结构特征。[结果]叶部共获得内生细菌OTUs 610个,茎部411个,根部174个。物种分类显示,叶部内生细菌种类隶属于22门40纲103目198科399属,其中优势类群是红球菌属(Rhodococcus)和乳酸杆菌属(Lactobacillus),它们的相对丰度分别为21.00%和9.19%;茎部内生细菌种类隶属于19门31纲85目169科306属,其中优势类群是红球菌属和罗尔斯通菌属(Ralstonia),它们的相对丰度分别为19.25%和13.52%;根部内生细菌种类隶属于9门19纲44目82科140属,其中优势类群是肠杆菌属(Enterobacter)和埃希氏杆菌属(Escherichia),它们的相对丰度分别为81.13%和10.89%。根茎叶中相同的OTU有78个,放线菌门(Actinobacteria)与大多数细菌具有相关性。根系内生细菌中具有调控各种代谢网络功能的物种丰度高于茎部和叶部。[结论]不同水稻组织内生细菌具有丰富的群落多样性,其中叶部的内生细菌物种最丰富,根系参与各种代谢调控的细菌丰度最高,各个组织部位的优势菌属各不相同,变形菌门是最重要的水稻内生细菌。 相似文献