首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a Doppler pulse flowmeter we measured the blood flow in the radial artery at rest and during physical exercise and various other stimuli (arithmetical calculations, electrical stimulation, deep inspiration). The mean resting flow in the radial artery was 0.66 ml/s. Every stimulus was instantaneously followed by a drop in the blood flow to a minimum value; there was no significant differences between these values. The results demonstrate that the new, non-invasive apparatus can be used to study quick changes in the blood flow not detected by routine non-invasive methods.  相似文献   

2.
This study aimed to determine the importance of repeated increases in blood flow to conduit artery adaptation, using an exercise-independent repeated episodic stimulus. Recent studies suggest that exercise training improves vasodilator function of conduit arteries via shear stress-mediated mechanisms. However, exercise is a complex stimulus that may induce shear-independent adaptations. Nine healthy men immersed their forearms in water at 42°C for three 30-min sessions/wk across 8 wk. During each session, a pneumatic pressure cuff was inflated around one forearm to unilaterally modulate heating-induced increases in shear. Forearm heating was associated with an increase in brachial artery blood flow (P<0.001) and shear rate (P<0.001) in the uncuffed forearm; this response was attenuated in the cuffed limb (P<0.005). Repeated episodic exposure to bilateral heating induced an increase in endothelium-dependent vasodilation in response to 5-min ischemic (P<0.05) and ischemic handgrip exercise (P<0.005) stimuli in the uncuffed forearm, whereas the 8-wk heating intervention did not influence dilation to either stimulus in the cuffed limb. Endothelium-independent glyceryl trinitrate responses were not altered in either limb. Repeated heating increases blood flow to levels that enhance endothelium-mediated vasodilator function in humans. These findings reinforce the importance of the direct impacts of shear stress on the vascular endothelium in humans.  相似文献   

3.
Eight rhesus monkeys were used to study responses of radial artery blood flow velocity (RABFV) and heart rate (HR) to low (0 to -20 mmHg) and high (0 to -60 mmHg) ramp exposures during supine lower body negative pressure (LBNP). These levels were chosen to separate peripheral vascular responses associated with stimulation of low- and high-pressure baroreceptors. Four monkeys had efferent and afferent cardiac denervation by use of the Randall procedure with pharmacological (phenylephrine and atropine) verification. Animals were studied 3 wk after surgery to avoid reinnervation. Findings were compared with those of four identically treated intact animals. Denervated animals showed no change in RABFV or HR during low-level LBNP; however, HR increased significantly (P less than 0.05) when LBNP reached -50 mmHg and blood flow velocity also fell (P less than 0.05) starting at -30 mmHg pressure. In contrast, intact animals showed steady decreases in RABFV during both high- and low-pressure protocols, with HR showing a 6-beat/min increase (P less than 0.05) starting at -20 mmHg pressure. As with denervated animals, intact animals showed a more pronounced increase in HR after reaching a level of -60 mmHg suction. Cardiac output (electromagnetic flowmeter, ascending aorta) fell significantly in both groups starting at -30 mmHg pressure. Left ventricular pressure (Konigsberg pressure cell) in three intact animals showed a progressive fall in systolic pressure starting at -10 mmHg suction, which became significant at -55 mmHg pressure. These results demonstrate that cardiac denervation by use of the Randall technique significantly affects RABFV and HR responses to LBNP in rhesus monkeys. The lack of RABFV change during LBNP in denervated animals suggests that these changes coupled with HR response can be used as an effective method to verify the completeness of denervation of low-pressure baroreceptors in animals that have undergone intrapericardial denervation.  相似文献   

4.
Arterial distensibility, assessed by the pulse-wave velocity (PWV), is an independent predictor of cardiovascular risk. We investigated whether natriuretic peptides, acting locally, modify conduit artery distensibility in vivo. All studies were conducted in anesthetized sheep (n = 18) by using a validated ovine hindlimb model. In brief, the PWV was calculated, with the use of the foot-to-foot methodology, from two pressure waveforms recorded simultaneously with a high-fidelity dual pressure-sensing catheter placed in the common iliac artery. Drugs were infused either proximally, via the catheter to perfuse the segment of artery under study, or distally, via the sheath to control for any reflex changes in flow or sympathetic activation. First, the effects of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and c-type natriuretic peptide (CNP) were studied. Second, the role of endogenous ANP was investigated by infusing the natriuretic peptide receptor type A (NPRA)-selective receptor antagonist A71915. Third, A71915 was coinfused with ANP. Fourth, the NPRC-selective agonist cANF was infused. Infusion of CNP or des-[Gln18Ser19Gly20Leu21Gly22]-ANF-(4-23)-NH2 (cANF) had no effect on iliac PWV. However, infusion of ANP, and to a lesser degree BNP, resulted in a reduction in PWV (-9%; P < 0.01 and -6%; P < 0.05, respectively). A71915 increased iliac PWV from 2.97 +/- 0.13 to 3.06 +/- 0.13 m/s; P < 0.01. Coinfusion of A71915 with ANP completely abolished the effects of ANP (P < 0.01). Importantly, ANP-BNP infusion via the sheath did not alter PWV. In conclusion, ANP, and to a lesser extent BNP, modify large artery distensibility via the NPRA receptor. Neither CNP nor cANF altered PWV, suggesting that the NPRB and NPRC receptors do not acutely influence distensibility in vivo.  相似文献   

5.
The vasodilatory effects of insulin account for up to 40% of insulin-mediated glucose disposal; however, insulin-stimulated vasodilation is impaired in individuals with type 2 diabetes, limiting perfusion and delivery of glucose and insulin to target tissues. To determine whether exercise training improves conduit artery blood flow following glucose ingestion, a stimulus for increasing circulating insulin, we assessed femoral blood flow (FBF; Doppler ultrasound) during an oral glucose tolerance test (OGTT; 75 g glucose) in 11 overweight or obese (body mass index, 34 ± 1 kg/m2), sedentary (peak oxygen consumption, 23 ± 1 ml·kg?1·min?1) individuals (53 ± 2 yr) with non-insulin-dependent type 2 diabetes (HbA1c, 6.63 ± 0.18%) before and after 7 days of supervised treadmill and cycling exercise (60 min/day, 60-75% heart rate reserve). Fasting glucose, insulin, and FBF were not significantly different after 7 days of exercise, nor were glucose or insulin responses to the OGTT. However, estimates of whole body insulin sensitivity (Matsuda insulin sensitivity index) increased (P < 0.05). Before exercise training, FBF did not change significantly during the OGTT (1 ± 7, -7 ± 5, 0 ± 6, and 0 ± 5% of fasting FBF at 75, 90, 105, and 120 min, respectively). In contrast, after exercise training, FBF increased by 33 ± 9, 39 ± 14, 34 ± 7, and 48 ± 18% above fasting levels at 75, 90, 105, and 120 min, respectively (P < 0.05 vs. corresponding preexercise time points). Additionally, postprandial glucose responses to a standardized breakfast meal consumed under "free-living" conditions decreased during the final 3 days of exercise (P < 0.05). In conclusion, 7 days of aerobic exercise training improves conduit artery blood flow during an OGTT in individuals with type 2 diabetes.  相似文献   

6.
There are conflicting reports on the accuracy of the thermal dissipation probe (TDP, the Granier method) measurement using the original formula, which is widely used to estimate the transpiration of individual trees and forest stands. In this article, six woody species of three wood types were used to study a possible association between TDP measurement accuracy and wood anatomical characteristics, including the vessel diameter and density, as well as sapwood depth. We found that TDP technique with Granier’s original equation underestimated the sap flux density in six species to various degrees, dependent on conduit size and sap flux. Our calibration using two conifers with small diameters and a high density of tracheids was relatively consistent with Granier’s calibration; however, because there were larger diameters and lower densities of vessels in the two diffuse-porous species, the original calibration significantly underestimated sap flow. Two ring-porous species had the largest diameters and lowest densities of vessels. In particular, Robinia pseudoacacia possessed the shallowest sap wood depth, less than a probe length. Our calibration for the ring-porous species, especially R. pseudoacacia, deviated far from the original calibration, which mostly underestimated the sap flow. The degree of underestimation was well associated with sap wood depth and the radial diameter and density distribution of conduits. Our results demonstrated that a new calibration must be operated for each species together with the sapwood depth determination and more probes may be applied for one stem in the field to obtain the more accurate sap flux. In addition, we investigated the effects of different environmental temperature and perfusing fluid composition on the TDP-based sap flux measurement. We found that an environmental temperature reduction from 25 to 0 °C did not alter the values of the maximum temperature difference (ΔTm) between a heated probe and a reference probe when there was no sap flow, verifying that ΔTm measured at night can be used as a reference in daytime.  相似文献   

7.
8.
9.
To determine whether conduit artery size affects functional responses, we compared the magnitude, time course, and eliciting shear rate stimulus for flow-mediated dilation (FMD) in healthy men (n = 20; 31 +/- 7 yr). Upper limb (brachial and radial) and lower limb (common and superficial femoral) FMD responses were simultaneously assessed, whereas popliteal responses were measured in the same subjects during a separate visit. Glyceryl trinitrate (GTN)-mediated responses were similarly examined. Edge detection and wall tracking of high-resolution B-mode arterial ultrasound images, combined with synchronized Doppler waveform envelope analysis, were used to calculate conduit artery diameter, blood flow, and shear rate continuously across the cardiac cycle. Baseline artery size correlated inversely with the FMD response (r = -0.57, P < 0.001). Within-artery comparisons revealed a significant inverse correlation between artery size and FMD% for the radial (r = -0.66, P = 0.001), brachial (r = -0.55, P = 0.01), and popliteal artery (r = -0.48, P = 0.03), but not for the superficial and common femoral artery. Normalization of FMD responses for differences in eliciting shear rate did not abolish the between-artery relationship for artery function and size (r = -0.48, P < 0.001), suggesting that differences between artery function responses were not entirely due to size-related differences in shear rate. This was reinforced by a significant between-artery correlation for GTN responses and baseline artery size (r = -0.74, P < 0.001). In summary, systematic differences exist in vascular function responses of conduit arteries that differ in size. This raises the possibility that differences in artery size within or between individuals may influence functional responses.  相似文献   

10.
Chin KY 《Plastic and reconstructive surgery》2011,127(2):1013; author reply 1013-1013; author reply 1014
  相似文献   

11.
The Himalayan mountain range is strategically located at the crossroads of the major cultural centers in Asia, the Middle East and Europe. Although previous Y‐chromosome studies indicate that the Himalayas served as a natural barrier for gene flow from the south to the Tibetan plateau, this region is believed to have played an important role as a corridor for human migrations between East and West Eurasia along the ancient Silk Road. To evaluate the effects of the Himalayan mountain range in shaping the maternal lineages of populations residing on either side of the cordillera, we analyzed mitochondrial DNA variation in 344 samples from three Nepalese collections (Newar, Kathmandu and Tamang) and a general population of Tibet. Our results revealed a predominantly East Asian‐specific component in Tibet and Tamang, whereas Newar and Kathmandu are both characterized by a combination of East and South Central Asian lineages. Interestingly, Newar and Kathmandu harbor several deep‐rooted Indian lineages, including M2, R5, and U2, whose coalescent times from this study (U2, >40 kya) and previous reports (M2 and R5, >50 kya) suggest that Nepal was inhabited during the initial peopling of South Central Asia. Comparisons with our previous Y‐chromosome data indicate sex‐biased migrations in Tamang and a founder effect and/or genetic drift in Tamang and Newar. Altogether, our results confirm that while the Himalayas acted as a geographic barrier for human movement from the Indian subcontinent to the Tibetan highland, it also served as a conduit for gene flow between Central and East Asia. Am J Phys Anthropol 151:169–182, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Brachial artery flow-mediated dilation (FMD) is a strong predictor of future cardiovascular disease and is believed to represent a "barometer" of systemic endothelial health. Although a recent study [Padilla et al. Exp Biol Med (Maywood) 235: 1287-1291, 2010] in pigs confirmed a strong correlation between brachial and femoral artery endothelial function, it is unclear to what extent brachial artery FMD represents a systemic index of endothelial function in humans. We conducted a retrospective analysis of data from our laboratory to evaluate relationships between the upper (i.e., brachial artery) vs. lower limb (superficial femoral n = 75; popliteal artery n = 32) endothelium-dependent FMD and endothelium-independent glyceryl trinitrate (GTN)-mediated dilation in young, healthy individuals. We also examined the relationship between FMD assessed in both brachial arteries (n = 42). There was no correlation between brachial and superficial femoral artery FMD (r(2) = 0.008; P = 0.46) or between brachial and popliteal artery FMD (r(2) = 0.003; P = 0.78). However, a correlation was observed in FMD between both brachial arteries (r(2) = 0.34; P < 0.001). Brachial and superficial femoral artery GTN were modestly correlated (r(2) = 0.13; P = 0.007), but brachial and popliteal artery GTN responses were not (r(2) = 0.08; P = 0.11). Collectively, these data indicate that conduit artery vasodilator function in the upper limbs (of healthy humans) is not predictive of that in the lower limbs, whereas measurement of FMD in one arm appears to be predictive of FMD in the other. These data do not support the hypothesis that brachial artery FMD in healthy humans represents a systemic index of endothelial function.  相似文献   

13.
14.
15.
16.
J L Lange  P S Thorne    N Lynch 《Applied microbiology》1997,63(4):1557-1563
Current limitations in the methodology for enumeration and identification of airborne bacteria compromise the precision and accuracy of bioaerosol exposure assessment. In this study, flow cytometry and fluorescent in situ hybridization (FISH) were evaluated for the assessment of exposures to airborne bacteria. Laboratory-generated two-component bioaerosols in exposures chambers and complex native bioaerosols in swine barns were sampled with two types of liquid impingers (all-glass impinger-30 and May 3-stage impinger). Aliquots of collection media were processed and enumerated by a standard culture technique, microscopy, or flow cytometry after nucleic acid staining with 4',6-diamidino-2-phenylindole (DAPI) and identified taxonomically by FISH. DAPI-labeled impinger samples yielded comparable estimates of bioaerosol concentrations when enumerated by microscopy or flow cytometry. The standard culture method underestimated bioaerosol concentrations by 2 orders of magnitude when compared to microscopy or flow cytometry. In the FISH method, aliquots of collection media were incubated with a probe universally complementary to eubacteria, a probe specific for several Pseudomonas species, and a probe complementary to eubacteria for detection of nonspecific binding. With these probes, FISH allowed quantitative identification of Pseudomonas aeruginosa and Escherichia coli bioaerosols in the exposure chamber without measurable nonspecific binding. Impinger samples from the swine barn demonstrated the efficacy of the FISH method for the identification of eubacteria in a complex organic dust. This work demonstrates the potential of emerging molecular techniques to complement traditional methods of bioaerosol exposure assessment.  相似文献   

17.
The genetic control and phenotypic and genotypic correlations among wood density, modulus of elasticity, height, diameter, and volume were assessed using 967 trees representing 20 unrelated 32-year-old coastal Douglas-fir full-sib families growing on four (spaced and pruned vs. control) comparable test sites. Generally, no significant differences were observed between treatments, indicating their limited effect at assessment time. Family effect did not differ for the growth traits; however, significant differences were observed for wood density and both in situ methods (drilling resistance and acoustic velocity). Growth and wood quality attributes, individually, produced high and positive phenotypic and genetic correlations; however, high and negative correlations were observed between individual variables belonging to the two suites of attributes. Individual tree heritabilities were low for growth (0.04 to 0.08) and modest to high for wood quality attributes (0.14 to 0.68). The observed heritabilities and phenotypic and genotypic correlations imply modest to strong genetic control; however, they operated in opposing direction. The significant and consistent genetic correlations between the in situ methods and wood density and stiffness support their use as a non-destructive and economic assessment approach. The reliability of the in situ assessments was verified through cumulative pith-to-bark wood density assessment, resulting in inconsistent genetic and phenotypic correlations for early growth years. These latter findings imply that caution should be used in employing these in situ techniques as early screening tools in breeding programs.  相似文献   

18.
N R Harris  M S Webb  J W May 《Plastic and reconstructive surgery》1992,90(4):553-8; discussion 559-61
An intraoperative study was done to establish the functional and quantitative properties of the blood supply to the TRAM flap through the assessment and manipulation of blood flow through the deep epigastric arterial system. Seventeen patients undergoing unilateral postmastectomy breast reconstruction with lower transverse rectus abdominis myocutaneous (TRAM) flaps were studied. The study is divided into two parts: (1) ultrasonic measurement of blood flow in the deep inferior epigastric artery (DIEA), and (2) direct measurement of blood pressure in the deep epigastric arterial system, after division of the deep inferior epigastric artery. With occlusion of the superior epigastric artery at the level of the upper edge of the skin flap, 71 percent of the patients had a decrease in the blood flow through the deep inferior epigastric artery, with an average decrease of 23 percent. This implies that the area of watershed perfusion in the lower TRAM flap is superior to the umbilicus, and therefore, survival of all lower TRAM flap tissues requires reversal in the normal direction of arterial flow to the flap. The blood pressure in the proximal stump of the deep inferior epigastric arterial system averaged 46 percent of the mean systemic blood pressure. Occlusion of the medial and lateral thirds of the isolated rectus muscle decreased the mean arterial blood pressure in the flap an average of 19 percent in 80 percent of the individuals studied. These data support the technique of harvesting the entire rectus muscle, avoiding muscle-splitting maneuvers that may compromise axial blood flow.  相似文献   

19.
It is well established that endothelial dysfunction is present in coronary artery disease (CAD), although few studies have determined the effect of training on peripheral conduit vessel function in patients with CAD. A randomized, crossover design determined the effect of 8 wk of predominantly lower limb, combined aerobic and resistance training, in 10 patients with treated CAD. Endothelium-dependent dilation of the brachial artery was determined, by using high-resolution vascular ultrasonography, from flow-mediated vasodilation (FMD) after ischemia. Endothelium-independent vasodilation was measured after administration of glyceryl trinitrate (GTN). Baseline function was compared with that of 10 control subjects. Compared with matched healthy control subjects, FMD and GTN responses were significantly impaired in the untrained CAD patients [3.0 +/- 0.8 (SE) vs. 5.8 +/- 0.8% and 14.5 +/- 1.9 vs. 20.4 +/- 1.5%, respectively; both P < 0.05]. Training significantly improved FMD in the CAD patients (from 3.0 +/- 0.8 to 5.7 +/- 1.1%; P < 0.05) but not responsiveness to GTN (14.5 +/- 1.9 vs. 12.1 +/- 1.4%; P = not significant). Exercise training improves endothelium-dependent conduit vessel dilation in subjects with CAD, and the effect, evident in the brachial artery, appears to be generalized rather than limited to vessels of exercising muscle beds. These results provide evidence for the benefit of exercise training, as an adjunct to routine therapy, in patients with a history of CAD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号