首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heating oils and fats may lead to cyclization of polyunsaturated fatty acids, as for example linolenic acid. Cyclohexenyl and cyclopentenyl fatty acids are subsequently present in some edible oils and these are suspected to induce metabolic disorders. In a previous experiment using [1-14C] labeled molecules, we published that these cyclic fatty acids are beta oxidized to the same extent as linolenic acid, at least for the first cycle of beta oxidation. However, it is possible that the presence of a ring could alter the ability of the organism to fully oxidize the molecule. In order to test this hypothesis, we assessed the oxidative metabolism of cyclic fatty acids carrying a 14C atom at the vicinity of the ring. For this purpose, rats were force-fed from 1.1 to 1.3 MBq of a representative fraction of dietary cyclohexenyl cyclic fatty acid monomers of [9-14C] 9-(6-propyl-cyclohex-3-enyl)-non-8-enoic acids and 14CO2 production was monitored for 24h. The animals were then necropsied and the radioactivity was determined in different tissues. No consistent radioactivity was recovered as 14CO2 24h after administration of the molecules. Sixty percent of the radioactivity was recovered in the urine and 30% in the gastrointestinal tract. By combining our previous data on the oxidation of [1-14C] cyclic fatty acids and the present results, we suggest that cyclohexenyl fatty acids are first beta oxidized in a similar way as linolenic acid and that the remaining molecule carrying the ring is detoxified and eliminated in the urine and feces.  相似文献   

2.
We hypothesized that the polyunsaturated fatty acids of the butterfly were probably derived from the diet and that there might be a great loss of body fat during metamorphosis. To substantiate these hypotheses, we analyzed the fatty acid composition and content of the diet, the larva, and the butterfly Morpho peleides. Both the diet and the tissues of the larva and butterfly had a high concentration of polyunsaturated fatty acids. In the diet, linolenic acid accounted for 19% and linoleic acid for 8% of total fatty acids. In the larva, almost 60% of the total fatty acids were polyunsaturated: linolenic acid predominated at 42% of total fatty acids, and linoleic acid was at 17%. In the butterfly, linolenic acid represented 36% and linoleic acid represented 11% of total fatty acids. The larva had a much higher total fatty acid content than the butterfly (20.2 vs. 6.9 mg). Our data indicate that the transformation from larva to butterfly during metamorphosis drastically decreased the total fatty acid content. There was bioenhancement of polyunsaturated fatty acids from the diet to the larva and butterfly. This polyunsaturation of membranes may have functional importance in providing membrane fluidity useful in flight.  相似文献   

3.
Abstract: Female rats were fed pursed diets containing 10% safflower oil, which is high in linoleic acid, from approximately 2 weeks prior to mating until the 14th day of gestation. They were then fed purified diets containing safflower oil, soybean oil (containing linoleic and linolenic acids), or hydrogenated coconut oil (essential fatty acid deficient). On days 16, 18, and 21 of gestation, foetuses were removed by caesarean section and the brains were subjected to fatty acid analysis. By day 16 of gestation, the ethanolamine glycerophospholipids and combined serine-inositol glycerophospholipids were rich in polyunsaturated fatty acids, particularly arachidonic acid. Between days 16 and 21 of gestation, there was a marked increase in the C22-polyunsaturated acids in these glycerophospholipids, with 225n-6 deposited in foetuses from dams fed safflower or coconut oils and 22:6n-3 deposition occurring in the soybean oil group; the effects of essential fatty acid deficiency in this period were minimal. A similar pattern was evident in the choline glycerophospholipids but this fraction contained less of the polyunsaturated acids. The data are consistent with increased placental transfer of highly unsaturated fatty acids or increased foetal synthesis of these compounds during the last week of gestation, with the actual fatty acid pattern reflecting the dietary fat available to the dam.  相似文献   

4.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

5.
Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research.  相似文献   

6.
The tufted apple budmoth, Platynota idaeusalis (Walker), was reared non-axenically for two successive generations on a casein-based semisynthetic diet. The qualitative essential fatty acid requirement for growth, development and normal pupal-adult ecdysis was studied using the non-axenic casein-based semisynthetic diets with and without various 99% pure fatty acids. Linoleic or linolenic acids caused accelerated larval development; linoleic, linolenic and arachidonic acids showed similar activity in body weight gain and survival to pupal-adult ecdysis. Linoleic or linolenic acids were active in alleviating wing deformities; arachidonic acid was partially active in alleviating wing deformities at the one dietary concentration evaluated. Activity of arachidonic acid as an essential fatty acid for P. idaeusalis is unique among insects, except for mosquitoes. The essential fatty acid deficiency syndrome of the adult, resulting from the larvae feeding on fat-deficient diets, was greatly reduced when larvae were fed on a diet adequate in essential fatty acid during either their early or late development.  相似文献   

7.
We examined the influence of diets supplemented with fish and vegetable oils on fatty acid and prostaglandin E2 (PGE2) contents in livers of non-7,12-dimethylbenz[a]anthracene (DMBA)- and DMBA-treated rats, and in DMBA-induced tumours. Decreased concentrations of saturated fatty acids and increased unsaturated fatty acid levels were observed in liver phospholipids of rats fed these oils. There was a marked difference in the concentrations of fatty acids found in the tumours and those present in liver lipids. Oleic acid was the main unsaturated fatty acid found in the tumour tissue. Both liver and tumour PGE2 contents were clearly correlated to the diet. The PGE2 concentrations were decreased in livers and tumours of rats fed fish (FO) and linseed oils (LO).  相似文献   

8.
The newly hatched chick obtains its fatty acids almost completely from the lipids of the egg yolk as these are transferred to the developing embryo during its 21-day period of incubation. Since the diet of the laying hen greatly influences the fatty acid composition of the egg lipids, and presumably also the fatty acid composition of the resulting chick, we tested how quickly and to what extent varying the amount of n-3 fatty acids in the diet of the hen would modulate the level of n-3 fatty acids in the brain and retina of the newly hatched chick. White Leghorn hens were fed commercial or semi-purified diets supplemented with 10% fish oil, linseed oil, soy oil, or safflower oil. Eggs, together with the brain, retina, and serum of newly hatched chicks, were then analyzed for fatty acid composition. The fatty acids of egg yolk responded quickly to the hen's diet with most of the change occurring by 4 weeks. There was a linear relationship between the linolenic acid content of the diets and levels of this fatty acid in egg yolk and chick serum. In chicks from hens fed the fish oil diet, the total n-3 fatty acids, including 22:6(n-3), were elevated twofold in the brain and retina and sevenfold in serum relative to commercial diet controls. The safflower oil diet led to a very low n-3 fatty acid content in egg yolks and only 25% of the control n-3 fatty acid content in the brain and retina of chicks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Neuronal death generally involves, directly or indirectly, free radical attack and peroxidation. Targets are nucleic acids, proteins, the cytoskeleton, the extracellular matrix and especially membrane polyunsaturated fatty acids. a) One example for the fundamental role of fatty acids. Dietary fatty acids, and more particularly essential polyunsaturated fatty acids, have a direct influence on the composition of cerebral membranes, and hence on their functioning. Each of the two series of polyunsaturated fatty acids plays a particular role. In animals, a deficiency in linolenic acid causes serious perturbations in the nervous system. In fact, feeding animals with oils that have a low n-3 content leads to severe abnormalities in the composition of membranes, both of the brain and other organs. The rate of recovery from these anomalies is extremely slow in the brain, but rapid in the liver. Compared to certain other organs, the nervous system is neither protected against deficiency nor has it priority in the satisfaction if its needs. A decrease in acids of the linolenic series in the membranes results in a 40% reduction of Na-K-ATPase in nerve endings and a 20% reduction in 5'-nucleotidase. It also leads to anomalies in the electroretinogram which disappear with age. This deficiency in linolenic acid has little effect on motor function and disturbes activity and emotivity only slightly, but it seriously affects learning tasks. The presence of linolenic acid in the diet confers greater resistance to certain neurotoxic substances (triethyl lead, for example). Fatty acids essential for the brain could be those with very long chains. They are probably synthesized in the liver from linolenic and linoleic acids. They can also be supplied directly by food. However, if the diet contains a large proportion of very long chain fatty acids (fish oils), the lipid composition of all organs, including the brain, is altered. During the period of brain development there is a linear relation between the polyunsaturated fatty acid content of the brain and that of the diet. The requirement in linolenic acid is 200 mg/100 g of diet (0.4% of calories). That of linoleic acid is 1,200 mg/100 g of diet (2.4% of calories). b) Peroxidation of polyunsaturated fatty acids. Arachidonic acid is released by lysis of phospholipids (it is directly toxic), its peroxidized derivatives are extremely toxic. Peroxidation of membrane lipids alters enzymatic activity, the relationship between receptor and ligand, transport, and the symmetry of the lipid bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Our hypothesis that the trans fatty acids in hydrogenated fat inhibited the synthesis of polyunsaturated fatty acids in the phospholipid of arterial cells was tested with five groups each with six pregnant porcine fed from d 35 of gestation and during lactation. The basal diet contained 2% corn oil (control). The other four diets included the control + 10% butter or 10% hydrogenated fat plus two levels of Mg. Plasma, milk and aortic phospholipid fatty acids, phospholipid composition and calcium content of the aorta from the piglets were determined. At 48 +/- 2 d of age, the aorta phospholipid of piglets from porcine fed hydrogenated fat contained a significantly higher concentration of linoleic acid, less arachidonic acid, and less long chain polyunsaturated fatty acid (PUFA) than did piglets from porcine fed either butterfat or the control diet. Mg had no effect. These changes in composition in piglets from porcine fed hydrogenated fat indicate that trans fat inhibits the metabolic conversion of linoleic acid to arachidonic acid and to other n-6 PUFA. The aortic calcium content data showed a significant interaction of calcium concentration with age. We concluded: 1) that dietary trans fat perturbed essential fatty acid (EFA) metabolism which led to changes in the phospholipid fatty acid composition in the aorta, the target tissue of atherogenesis, 2) this inhibition of EFA to PUFA by the isomeric fatty acids in hydrogenated fat is a risk factor in the development of coronary heart disease.  相似文献   

11.
Decapods are important in aquaculture practice and as models for marine biology research, due to peculiar endocrine and physiologic adaptations to various environments. For these reasons, decapods are cultivated. To promote their correct development and sexual maturation, the preparation of balanced diets is crucial. Several diets, both experimental and for aquaculture purposes, have been established, but the set of essential fatty acids is still unknown for most species. Furthermore, fatty acids contained in formulated feeds are differentially sensitive to decay over the storage time. Here we compare growth, maturation and mortality of post-larvae fed on a formulated diet containing Artemia sp., Spirulina sp. and a fatty acid integrator, as administered immediately after its production and after 12 months of storage. The same foods were analysed for their fatty acid contents using gas chromatography. The sets of fatty acids present in differently aged foods corresponded to differences in the growth rates and survival of the model organism Hippolyte inermis cultured in the laboratory. The differences were mainly due to seven fatty acids, whose abundance decreased during the storage, the most important of which were arachidonic and linolenic acid, that are known to be essential for other species of decapods.  相似文献   

12.
We investigated the effects of dietary fatty acids of different chain lengths during pregnancy in the rat on the susceptibility of offspring to later-life obesity and the underlying mechanisms. Pregnant rats were fed three different diets: standard (STD), high medium-chain fatty acids (MCFA); and high long-chain fatty acids (LCFA). The male offspring were assigned to three groups: STD control, MCFA and LCFA according to the maternal diets and suckled by dams fed with STD during pregnancy and lactation. After weaning, the offspring were fed with STD from 3 to 8 weeks of age. At the age of 8 weeks, rats in three groups: high-fat diet (HFD) control, MCFA and LCFA were fed with HFD until 14 weeks of age in an attempt to induce obesity, and rats in the HFD control group were selected randomly from the STD control group. Body weight and body fat content were decreased in the MCFA group accompanied by down-regulated mRNA expression of fatty acid synthase and acetyl-coA carboxylase 1, and increased mRNA and protein expression of adenosine monophosphate (AMP)-activated protein kinase (AMPK), carnitine palmitoyltransferase 1 and uncoupling protein 3 compared with the corresponding controls at 3, 8 and 14 weeks of age. The results suggested that the MCFA diet during pregnancy prevented later-life obesity in the offspring when they were exposed to HFD in later life, which might be related to programming of the expression of genes involved in fatty acid metabolism.  相似文献   

13.
BACKGROUND: Omega‐6 fatty acids are important to fetal development. However, during gestation/lactation, these fatty acids may contribute toward the development of fat tissue. Omega‐9 fatty acids are associated with a reduction in serum lipids and protection from liver disease. OBJECTIVES: The present study investigated the effect of the maternal intake of omega‐6 and omega‐9 in hypercholesterolemic mothers on the liver of the offspring. METHODS: LDL receptor–deficient mice were fed a diet rich in either omega‐6 (E6D) or omega‐9 (E9D) for 45 days prior to mating and until the birth of the offspring, evaluating the effect on the offspring liver in comparison to a standard diet (STD). RESULTS: Mothers fed with the E6D experienced an increase in total cholesterol (TC) and the offspring exhibited an increase in TC, hepatic triglycerides (TG), and CC‐chemokine ligand (CCL)2/monocyte chemoattractant protein (MCP)‐1 as well as a reduction in HDL. Histological analysis on this group revealed steatosis, leukocyte infiltrate, and increased CCL2/MCP‐1 expression. The ultrastructural analysis revealed hepatocytes with lipid droplets and myofibroblasts. The offspring of mothers fed the standard diet exhibited low serum TC, but microvesicular steatosis was observed. The offspring of mothers fed the E9D exhibited lower serum and hepatic TG as well as higher LDL in comparison to the other diets. The histological analyses revealed lower steatosis and leukocyte infiltrate. CONCLUSIONS: The findings suggest that hypercholesterolemic mothers with a diet rich in omega‐6 fatty acids predispose their offspring to steatohepatitis, whereas a diet rich in omega‐9 has a protective effect. Birth Defects Res (Part B) 89:164–170, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
In response to new recommendations for feeding giraffe in zoos, giraffe (n = 6) were transitioned from a typical hoofstock diet to diets containing reduced starch, protein, Ca and P and added n3 fatty acids. This diet was fed as a 50:50 mix with alfalfa and grass hay. Over the next 4 years, serum Ca, P, and fatty acids were measured every 6 months (summer and winter). Serum Ca was not affected by season (P = 0.67) or by diet (P = 0.12). Serum P was not affected season (P = 0.14), but was reduced by diet (P<0.01), and serum Ca:P was also increased by diet (P<0.01). The ratio of serum Ca:P tended to be affected by season (P = 0.07), in which animals tended to have greater Ca:P during the summer vs. the winter. The diet transition resulted in reduced serum saturated fatty acids (including lauric, myristic, palmitic, arachidic, and behenic acids), and increases in n6 fatty acids (including linolenic and arachidonic acids) and n3 fatty acids (docosahexaenoic acid) (P<0.05 for each). Overall, this diet transition resulted in blood nutrient profiles that more closely match that of values found in free-ranging giraffe.  相似文献   

15.
The aim of this study was to investigate the effects of different levels of substitution of fish oil by vegetable oils rich in oleic, linoleic and linolenic acids on gilthead seabream plasma and leukocyte fatty acid compositions and prostaglandin (PG) and leptin production. Juvenile seabream of 24 g initial body mass were fed four iso-energetic and iso-proteic experimental diets for 281 days. Fatty acid composition of plasma lipids was markedly affected by the inclusion of vegetable oils (VO). ARA (arachidonate), EPA (eicosapentaenoate) and DHA (docosahexaenoate) were preferentially incorporated into polar lipids of plasma, and DHGLA (di-homogammalinoleate) accumulated with increased vegetable oil inclusion. Dietary treatments resulted in alterations of DHGLA/ARA ratios, but not ARA/EPA. ARA-derived PGE2 production in plasma was not affected by vegetable oils, in agreement with similar eicosanoid precursor ratio (ARA/EPA) in leukocytes total lipids and plasma phospholipids among fish fed with the different dietary treatments. Feeding vegetable oils leads to a decrease in plasma EPA which in turn reduced plasma PGE3 concentration. Moreover, PGE3 was the major prostaglandin produced in plasma of fish fed fish oil based diet. Such findings point out the importance of EPA as a precursor of prostaglandins in marine fish, at least for the correct function of the blood cells, and correlates well with the predominant role of this fatty acid in immune regulation in this species. A negative correlation was found between plasma PGE2 and leptin plasma concentration, suggesting that circulating levels of leptin may act as a metabolic signal modulating PGE2 release. The present study has shown that increased inclusion of vegetable oils in diet for gilthead seabream may profoundly affect the fatty acid composition of plasma and leukocytes, specially HUFA (highly unsaturated fatty acids), and consequently the production of PGE3, which can be a major PG in plasma. Alteration in the amount and type of PG produced can be at least partially responsible for the changes in the immune system and health parameters of fish fed diets with high inclusion of VO.  相似文献   

16.
Various strategies have been developed to increase the cellular level of (n-3) polyunsaturated fatty acids in animals and humans. In the present study, we investigated the effect of dietary myristic acid, which represents 9% to 12% of fatty acids in milk fat, on the storage of α-linolenic acid and its conversion to highly unsaturated (n-3) fatty acid derivatives. Five isocaloric diets were designed, containing equal amounts of α-linolenic acid (1.3% of dietary fatty acids, i.e. 0.3% of dietary energy) and linoleic acid (7.0% of fatty acids, i.e. 1.5% of energy). Myristic acid was supplied from traces to high levels (0%, 5%, 10%, 20% and 30% of fatty acids, i.e. 0% to 6.6% of energy). To keep the intake of total fat and other saturated fatty acids constant, substitution was made with decreasing levels of oleic acid (76.1% to 35.5% of fatty acids, i.e. 16.7% to 7.8% of energy) that is considered to be neutral in lipid metabolism. After 8 weeks, results on physiological parameters showed that total cholesterol and low-density lipoprotein-cholesterol did not differ in the diets containing 0%, 5% and 10% myristic acid, but were significantly higher in the diet containing 30% myristic acid. In all the tissues, a significant increasing effect of the substitution of oleic acid for myristic acid was shown on the level of both α-linolenic and linoleic acids. Compared with the rats fed the diet containing no myristic acid, docosahexaenoic acid significantly increased in the brain and red blood cells of the rats fed the diet with 30% myristic acid and in the plasma of the rats fed the diet with 20% myristic acid. Arachidonic acid also increased in the brain of the rats fed the diet with 30% myristic acid. By measuring Δ6-desaturase activity, we found a significant increase in the liver of the rats fed the diet containing 10% of myristic acid but no effect at higher levels of myristic acid. These results suggest that an increase in dietary myristic acid may contribute in increasing significantly the tissue storage of α-linolenic acid and the overall bioavailability of (n-3) polyunsaturated fatty acids in the brain, red blood cells and plasma, and that mechanisms other than the single Δ6-desaturase activity are involved in this effect.  相似文献   

17.
We examined the influence of diets supplemented with fish and vegetable oils on fatty acid and prostaglandin E2 (PGE2) contents in livers of non-7,12-dimethylbenz[a]anthracene (DMBA)- and DMBA-treated rats, and in DMBA-induced tumours. Decreased concentrations of saturated fatty acids and increased unsaturated fatty acid levels were observed in liver phospholipids of rats fed these oils. There was a marked difference in the concentrations of fatty acids found in the tumours and those present in liver lipids. Oleic acid was the main unsaturated fatty acid found in the tumour tissue. Both liver and tumour PGE2 contents were clearly correlated to the diet. The PGE2 concentrations were decreased in livers and tumours of rats fed fish (FO) and linseed oils (LO).  相似文献   

18.
Diet during pregnancy and lactation influences the offspring’s health in the long-term. Indeed, human epidemiological studies and animal experiments suggest that different type of fatty acids consumption during pregnancy affect offspring development and susceptibility to metabolic disorders. Epigenetic changes are thought to be elicited by dietary factors during critical timing of development. microRNAs (miRNAs) are versatile regulators of gene expression. Thus, we aimed to determine the influence of different fatty acids on miRNA expression in offspring when given during early pregnancy. We fed pregnant either soybean (SO), olive (OO), fish (FO), linseed (LO), or palm-oil (PO) diets from conception to day 12 of gestation; and standard diet thereafter. miRNA expression was assessed in liver an adipose tissue of pregnant rats and their virgin counterparts. While liver concentrations of fatty acids in pregnant or virgin rats replicated those of the diets consumed during early pregnancy, their pups’ liver tissue marginally reflected those of the respective experimental feeds. By contrast, the liver fatty acid profile of adult offsprings was similar, regardless of the diet fed during gestation. Different parental miRNAs were modulated by the different type of fatty acid: in adult offspring, miR-215, miR-10b, miR-26, miR-377-3p, miR-21, and miR-192 among others, were differentially modulated by the different fatty acids fed during early pregnancy. Overall, our results show that maternal consumption of different types of fatty acids during early pregnancy influences miRNA expression in both maternal and offspring tissues, which may epigenetically explain the long-term phenotypic changes of the offspring.  相似文献   

19.
Cholesterol and lipoprotein metabolism were investigated in a group of rats fed a fish oil-supplemented diet, a rich source of n-3 fatty acids. For comparison purposes, other groups of rats were fed either safflower oil (n-6 fatty acids) or coconut oil (saturated fatty acids). Diets were isocaloric and contained identical amounts of cholesterol. Rats fed fish oils for 2 weeks showed a 35% lower plasma cholesterol level than rats fed safflower oil, who in turn showed a 14% lower plasma cholesterol level than those fed coconut oil. The fall in plasma cholesterol level with fish oils was associated with significant falls in low density and high density lipoprotein cholesterol levels, but with no significant change in the ratio of low density to high density lipoprotein cholesterol. The fatty acid compositions of plasma, hepatic, and biliary lipids showed relative enrichment with n-3 fatty acids, reflecting the composition of the diet. The fish oil diet increased the basal secretion rate of cholesterol into bile, but the bile acid secretion rate remained unchanged. It is suggested that n-3 fatty acids reduce the plasma cholesterol level in rats by increasing the transfer of cholesterol into bile.  相似文献   

20.
Both starvation of and feeding a high linoleic acid content diet to rats during late pregnancy resulted in marked differences in the metabolism of the fed offspring immediately after birth when compared to control neonates (mother fed the normal high carbohydrate content laboratory diet during pregnancy). In particular differences in postnatal changes in blood glucose, non esterified fatty acids and ketone bodies and in hepatic triglyceride content were observed. Many of the differences appeared to be related to the variations in blood and hepatic metabolites present at birth in the various groups of animals. A similar situation also existed with respect to postnatal changes in the activity of hydroxymethylglutaryl-CoA synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号