首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 8 毫秒
1.
This paper describes an investigation of the use of computer tomography (CT) to genetically improve carcass composition and conformation in Scottish Blackface sheep. After 5 years of selection on an index designed to improve both composition and conformation (the 'CT index'), a large response was observed in the CT index, with genetic progress equivalent to 0.11 phenotypic standard deviations per year. Heritabilities for the index and for the component traits of average CT-assessed muscle area, ultrasonic muscle depth and ultrasonic fat depth were 0.41 (s.e. 0.08), 0.38 (s.e. 0.07), 0.41 (s.e. 0.05) and 0.30 (s.e. 0.05), respectively. The index was positively genetically correlated with ultrasonic muscle depth and carcass weight and negatively genetically correlated with fat class. The genetic and phenotypic correlations among ultrasonic measurements were positive and moderate. However, many of the genetic correlations tended to have large standard errors. Selection on the CT index moderately improved conformation and was successful at decreasing fat class of the carcass. Equivalent selection on live weight at ultrasound scanning would improve carcass and slaughter weight, and total price received, but would have a slightly deleterious impact on conformation score. The results of this study demonstrate that genetic improvement of carcass quality can be achieved in hill sheep using CT assessed traits.  相似文献   

2.
A multi-trait selection index designed to improve the overall economic performance of hill sheep, including both maternal and lamb traits, has been developed and tested in a selection experiment over 7 years. Two versions of the index were tested, with different economic weights applied to the traits, on two different hill farms: one version including maternal and growth traits; the other version with additional breeding goals of carcass weight, fatness and conformation scores. Responses to selection, using both versions of the index, suggest that improvements are being made in overall index score and lamb growth. This study investigated the indirect effects of these selection indices on lamb carcass composition and muscularity traits, as measured using X-ray computed tomography (CT) scanning. A total of 499 lambs from the two hill farms were CT scanned at weaning (approximately 120 days of age). Approximately half of the lambs from each farm were from the selection line (S, animals with highest index scores selected for breeding), while the other half were from a control line (C, animals with average index scores selected). Composition and muscularity traits were estimated on each lamb from CT data and differences between genetic lines investigated, within farm, using restricted maximum likelihood analyses, adjusting for either live weight or age. Results showed that the selection index without carcass traits produced lambs with carcass composition that was not significantly different to control lambs at a given live weight or age. Including carcass traits in the index resulted in lambs with no compositional differences (except for a slight increase in bone) at a set age compared with controls. At a given live weight however, selection lambs had less fat and lower carcass weights and killing-out percentage. Muscularity (3-D muscle shape) and muscle area shape (2-D) were not improved as a result of selection on either version of the index (including carcass weight and grades in the breeding goals or not) and, at a fixed live weight, muscularity in hind leg and lumbar regions tended to be higher in the C line. To accelerate changes in carcass composition and muscularity within the context of a multi-trait selection index for hill sheep, consideration should therefore be given to including objective CT-derived carcass traits in the index in addition to the Meat and Livestock Commission (MLC) carcass grades or ultrasound measurements.  相似文献   

3.
The potential of the composition of the forerib measured by X-ray computed tomography (CT) as a predictor of carcass composition was evaluated using data recorded on 30 Aberdeen Angus and 43 Limousin crossbred heifers and steers. The left sides of the carcasses were split into 20 cuts, which were CT scanned and fully dissected into fat, muscle and bone. Carcass and forerib tissue weights were assessed by dissection and CT. Carcass composition was assessed very accurately by CT scanning of the primal cuts (adj-R2 = 0.97 for the three tissues). CT scanning predicted weights of fat, muscle and bone of the forerib with adj-R2 of 0.95, 0.91 and 0.75, respectively. Single regression models with the weights of fat, muscle or bone in the forerib measured by CT as the only predictors to estimate fat, muscle or bone of the left carcass obtained by CT showed adjusted coefficients of determination (adj-R2) of 0.79, 0.60 and 0.52, respectively. By additionally fitting breed and sex, accuracy increased to 0.85, 0.73 and 0.67. Using carcass and forerib weights in addition to the previous predictors improved significantly the prediction accuracy of carcass fat and muscle weights to adj-R2 values of 0.92 and 0.96, respectively, while the highest value for carcass bone weight was 0.77. In general, equations derived using CT data had lower adj-R2 values for bone, but better accuracies for fat and muscle compared to those obtained using dissection. CT scanning could be considered as an alternative very accurate and fast method to assess beef carcass composition that could be very useful for breeding programmes and research studies involving a large number of animals, including the calibration of other indirect methods (e.g. in vivo and carcass video image analysis).  相似文献   

4.
Sheep are an important part of the global agricultural economy. Growth and meat production traits are significant economic traits in sheep. The Texel breed is the most popular terminal sire breed in the UK, mainly selected for muscle growth and lean carcasses. This is a study based on a genome-wide association approach that investigates the links between some economically important traits, including computed tomography (CT) measurements, and molecular polymorphisms in UK Texel sheep. Our main aim was to identify single nucleotide polymorphisms (SNP) associated with growth, carcass, health and welfare traits of the Texel sheep breed. This study used data from 384 Texel rams. Data comprised ten traits, including two CT measured traits. The phenotypic data were placed in four categories: growth traits, carcass traits, health traits and welfare traits. De-regressed estimated breeding values (EBV) for these traits together with sire genotypes derived with the Ovine 50 K SNP array of Illumina were jointly analysed in a genome wide association analysis. Eight novel chromosome-wise significant associations were found for carcass, growth, health and welfare traits. Three significant markers were intronic variants and the remainder intergenic variants. This study is a first step to search for genomic regions controlling CT-based productivity traits related to body and carcass composition in a terminal sire sheep breed using a 50 K SNP genome-wide array. Results are important for the further development of strategies to identify causal variants associated with CT measures and other commercial traits in sheep. Independent studies are needed to confirm these results and identify candidate genes for the studied traits.  相似文献   

5.
In this study, computed tomography (CT) technology was used to measure body composition on live pigs for breeding purposes. Norwegian Landrace (L; n = 3835) and Duroc (D; n = 3139) boars, selection candidates to be elite boars in a breeding programme, were CT-scanned between August 2008 and August 2010 as part of an ongoing testing programme at Norsvin's boar test station. Genetic parameters in the growth rate of muscle (MG), carcass fat (FG), bone (BG) and non-carcass tissue (NCG), from birth to ~100 kg live weight, were calculated from CT data. Genetic correlations between growth of different body tissues scanned using CT, lean meat percentage (LMP) calculated from CT and more traditional production traits such as the average daily gain (ADG) from birth to 25 kg (ADG1), the ADG from 25 kg to 100 kg (ADG2) and the feed conversion ratio (FCR) from 25 kg to 100 kg were also estimated from data on the same boars. Genetic parameters were estimated based on multi-trait animal models using the average information-restricted maximum likelihood (AI-REML) methodology. The heritability estimates (s.e. = 0.04 to 0.05) for the various traits for Landrace and Duroc were as follows: MG (0.19 and 0.43), FG (0.53 and 0.59), BG (0.37 and 0.58), NCG (0.38 and 0.50), LMP (0.50 and 0.57), ADG1 (0.25 and 0.48), ADG2 (0.41 and 0.42) and FCR (0.29 and 0.42). Genetic correlations for MG with LMP were 0.55 and 0.68, and genetic correlations between MG and ADG2 were -0.06 and 0.07 for Landrace and Duroc, respectively. LMP and ADG2 were clearly unfavourably genetically correlated (L: -0.75 and D: -0.54). These results showed the difficulty in jointly improving LMP and ADG2. ADG2 was unfavourably correlated with FG (L: 0.84 and D: 0.72), thus indicating to a large extent that selection for increased growth implies selection for fatness under an ad libitum feeding regime. Selection for MG is not expected to increase ADG2, but will yield faster growth of the desired tissues and a better carcass quality. Hence, we consider MG to be a better biological trait in selection for improved productivity and carcass quality. CT is a powerful instrument in conjunction with breeding, as it combines the high accuracy of CT data with measurements taken from the selection candidates. CT also allows the selection of new traits such as real body composition, and in particular, the actual MG on living animals.  相似文献   

6.
The aim of the present work was (1) to study the relationship between cross-sectional computed tomography (CT) images obtained in live growing pigs of different genotypes and dissection measurements and (2) to estimate carcass composition and cut composition from CT measurements. Sixty gilts from three genotypes (Duroc×(Landrace×Large White), Pietrain×(Landrace×Large White), and Landrace×Large White) were CT scanned and slaughtered at 30 kg (n=15), 70 kg (n=15), 100 kg (n=12) or 120 kg (n=18). Carcasses were cut and the four main cuts were dissected. The distribution of density volumes on the Hounsfield scale (HU) were obtained from CT images and classified into fat (HU between −149 and −1), muscle (HU between 0 and 140) or bone (HU between 141 and 1400). Moreover, physical measurements were obtained on an image of the loin and an image of the ham. Four different regression approaches were studied to predict carcass and cut composition: linear regression, quadratic regression and allometric equations using volumes as predictors, and linear regression using volumes and physical measurements as predictors. Results show that measurements from whole animal taken in vivo with CT allow accurate estimation of carcass and cut composition. The prediction accuracy varied across genotypes, BW and variable to be predicted. In general, linear models, allometric models and linear models, which included also physical measurements at the loin and the ham, produced the lowest prediction errors.  相似文献   

7.
The objective of the study was to determine genetic parameters for growth and carcass traits in Mukota pigs, maintained on a fibrous diet. Records (n = 1961) were obtained from a population housed at the University of Zimbabwe Farm (Harare, Zimbabwe) between January 1998 and August 2003. Backfat thickness was measured at 50 and 75 mm (K5 and K7.5), respectively. Carcass length (CL) was measured from the anterior edge of the first rib to the pubic bone using a measuring tape. Variance components were estimated using a model that accounted for direct, common environmental litter and maternal genetic effects, using average information restricted maximum likelihood. Heritability estimates for average daily gain from birth to weaning (ADGW) and average daily gain from weaning to 12 weeks (ADG1) were 0.15 and 0.27, respectively. Maternal genetic effects accounted for 2.6% of variation for ADG1. Heritability for average daily gain from 12 weeks to slaughter (ADG2) was 0.20. Common environmental litter effects accounted for 18% of phenotypic variance for cold dressed mass (CDM). Heritability estimates for CDM and CL were 0.32 and 0.62, respectively. Maternal genetic effects accounted for 10.5% of variance in CL. Heritability estimates for K5 and K7.5 were 0.64 and 0.40, respectively. The CDM was positively genetically correlated to K5, but negative to K7.5. The K5 and K7.5 had a high genetic correlation (0.88). Genetic correlations between ADGW and K5, K7.5 and CL were 0.30, 0.05 and 0.35, respectively. The existence of sufficient genetic variation makes genetic improvement for many growth and carcass traits in the Mukota breed possible through effective selection methods.  相似文献   

8.
In an experimental strain of white plumage geese created in 1989, two experiments were carried out from 1993 to 1995 in order to estimate genetic parameters for growth, and carcass composition traits in non-overfed animals, and genetic parameters for growth and fatty liver formation in overfed animals. Four hundred and thirty-one non-overfed animals were bred and slaughtered at 11 weeks of age; they were measured for forearm length, keel bone length, chest circumference and breast depth before and after slaughtering. The carcasses were partly dissected in order weigh breast, breast muscle and skin + fat, and abdominal fat. Four hundred and seventy-seven overfed animals were slaughtered at 20 weeks of age; they were measured for "paletot" (breast meat, bone and meat from wings, bone and meat from thigh and legs) weight and liver weight. In these two experiments, the weights had moderate to high heritability values. Breast depth measured on live animals showed a low heritability value. In overfed animals, liver weight showed a high heritability value. Liver weight could be increased by selection without a great effect on "paletot" weight. Thus, obtaining a white plumage geese strain for fatty liver production by selection would be difficult because only 20% of overfed animals had fatty liver. The results did not allow to conclude on the influence of selection on liver weight on carcass traits such as muscle or fatty tissue weight.  相似文献   

9.
Dual energy X-ray absorptiometry (DEXA) is an imaging modality that has been used to predict the computed tomography (CT)-determined carcass composition of multiple species, including sheep and pigs, with minimal inaccuracies, using medical grade DEXA scanners. An online DEXA scanner in an Australian abattoir has shown that a high level of precision can be achieved when predicting lamb carcass composition in real time. This study investigated the accuracy of that same online DEXA when predicting fat and lean percentages as determined by CT over a wide range of phenotypic and genotypic variables across 454 lambs over 6 kill groups and contrasted these results against the current Australian industry standard of grade-rule (GR) measurements to grade carcasses. Lamb carcasses were DEXA scanned and then CT scanned to determine CT Fat % and CT Lean %. All phenotypic traits and genotypic information, including Australian Sheep Breeding Values, were recorded for each carcass. Residuals of the DEXA predicted CT Fat % and Lean %, and the actual CT Fat % and Lean % were calculated and tested against all phenotypic and genotypic variables. Excellent overall precision was recorded when predicting CT Fat % (R2 = 0.91, RMSE = 1.19%). Small biases present for sire breed, sire type, dam breed, hot carcass weight and c-site eye muscle area could be explained by a regression paradox; however, biases among kill group (−0.73% to 1.01% for CT Fat %, −1.48% to 0.76% for CT Lean %) and the Merino sire type (0.36% for CT Fat %, −0.73% for CT Lean %) could not be explained by this effect. Over the large range of phenotypic and genotypic variation, there was excellent precision when predicting CT Fat % and CT Lean % by an online DEXA, with only minor biases, showing superiority to the existing Australian standard of GR measurements.  相似文献   

10.
A three-step experimental design has been carried out to add evidence about the existence of the RN gene, with two segregating alleles RN- and rn+, having major effects on meat quality in pigs, to estimate its effects on production traits and to map the RN locus. In the present article, the experimental population and sampling procedures are described and discussed, and effects of the three RN genotypes on growth and carcass traits are presented. The RN genotype had no major effect on growth performance and killing out percentage. Variables pertaining to carcass tissue composition showed that the RN- allele is associated with leaner carcasses (about 1 s.d. effect without dominance for back fat thickness, 0.5 s.d. effect with dominance for weights of joints). Muscle glycolytic potential (GP) was considerably higher in RN- carriers, with a maximum of a 6.85 s.d. effect for the live longissimus muscle GP. Physico-chemical characteristics of meat were also influenced by the RN genotype in a dominant way, ultimate pH differing by about 2 s.d. between homozygous genotypes and meat colour by about 1 s.d. Technological quality was also affected, with a 1 s.d. decrease in technological yield for RN- carriers. The RN genotype had a more limited effect on eating quality. On the whole, the identity between the acid meat condition and the RN- allele effect is clearly demonstrated (higher muscle GP, lower ultimate pH, paler meat and lower protein content), and the unfavourable relationship between GP and carcass lean to fat ratio is confirmed.  相似文献   

11.
Intramuscular fat (IMF) % contributes positively to the juiciness and flavour of lamb and is therefore a useful indicator of eating quality. A rapid, non-destructive method of IMF determination like computed tomography (CT) would enable pre-sorting of carcasses based on IMF% and potential eating quality. Given the loin muscle (longissimus lumborum) is easy to sample, a single measurement at this site would be useful, providing is correlates well to other muscles. To determine the ability of CT to predict IMF%, this study used 400 animals and examined 5 muscles from three sections of the carcass: from the fore-section the m. supraspinatus and m. infraspinatus, from the saddle-section the m. longissimus lumborum and from the hind-section the m. semimembranosus and m. semitendinosus. The average CT pixel density of muscle was negatively associated with IMF% and can be used to predict IMF% although precision in this study was poor. The ability of CT to predict IMF% was greatest in the m. longissimus lumborum (slope −0.07) and smallest in the m. infraspinatus (slope −0.02). The correlation coefficients of IMF% between the five muscles were variable, with the highest correlation coefficients evident between muscles of the fore section (0.67 between the m. supraspinatus and the m. infraspinatus) and the weakest correlations were between the muscle of the fore and hind section. The correlation between the m. longissimus lumborum to the other muscles was fairly consistent with values ranging between 0.34 and 0.40 (partial correlation coefficient). The correlation between the proportion of carcass fat and the IMF% of the five muscles varied and was greatest in the m. longissimus lumborum (0.41).  相似文献   

12.
The aim of this study was to develop a method for scoring osteochondrosis (OC) by using information from computed tomography (CT), as well as to estimate the heritability for OC scored by means of CT (OCwCT) of the medial and lateral condyles at the distal end of the humerus or the femur of the right and left leg and the sum of these scores (OCT). In addition, we were aiming at revealing the genetic relationship between OCwCT traits and growth in different periods (days from birth to 30 kg (D30), days from 30 to 50 kg (D30_50), days from 50 to 70 kg (D50_70), days from 70 to 90 kg (D70_90), days from 90 to 100 kg (D90_100) and days from birth to 100 kg (D100)). The OCwCT was assessed for 1449 boars, and growth data were collected for these 1449 boars and additional 3779 boars tested in the same time period. All boars were tested as part of the Norsvin Landrace boar test and in the same test station. Heritabilities for OCwCT on anatomical locations varied from 0.21 (s.e. = 0.08) on the medial condyle of the right humerus to 0.06 (s.e. = 0.06) on the lateral condyle of the left femur, whereas OCT exhibited the highest heritability (h2 = 0.31, s.e. = 0.09). Genetic correlations between OCT and OCwCT for the anatomical locations ranged from 0.94 (s.e. = 0.07) for OCT and OCwCT score for the medial condyle of the humerus right side to 0.26 (s.e. = 0.39) for OCT and the lateral condyle of the femur left side. Genetic correlations between D30 and OCT were medium high and unfavourable (rg = −0.74). As the boar gain weight, the relationship between growth rate – expressed as number of days spent growing from one interval to the next – and OCT decreased to 0.12 (s.e. = 0.19, i.e. not significantly different from zero) for the trait D90_100 kg. These changes of genetic correlation coefficients coincide with the maturing of the joint cartilage and skeletal structures. In this study, we demonstrate that CT could be used for selection against OC in breeding programmes in pigs and that the genetic correlations between growth periods and OC are decreasing over time.  相似文献   

13.
Ovarian tissue cryopreservation is, in most cases, the only fertility preservation option available for female patients soon to undergo gonadotoxic treatment. To date, cryopreservation of ovarian tissue has been carried out by both traditional slow freezing method and vitrification, but even with the best techniques, there is still a considerable loss of follicle viability. In this report, we investigated a stepped cryopreservation procedure which combines features of slow cooling and vitrification (hereafter called stepped vitrification). Bovine ovarian tissue was used as a tissue model. Stepwise increments of the Me2SO concentration coupled with stepwise drops-in temperature in a device specifically designed for this purpose and X-ray computed tomography were combined to investigate loading times at each step, by monitoring the attenuation of the radiation proportional to Me2SO permeation. Viability analysis was performed in warmed tissues by immunohistochemistry. Although further viability tests should be conducted after transplantation, preliminary results are very promising. Four protocols were explored. Two of them showed a poor permeation of the vitrification solution (P1 and P2). The other two (P3 and P4), with higher permeation, were studied in deeper detail. Out of these two protocols, P4, with a longer permeation time at −40 °C, showed the same histological integrity after warming as fresh controls.  相似文献   

14.
Objective: Muscle triglyceride can be assessed in vivo using computed tomography (CT) and 1H magnetic resonance spectroscopy (MRS), two techniques that are based on entirely different biophysical principles. Little is known, however, about the cross‐correlation between these techniques and their test—retest reliability. Research Methods and Procedures: We compared mean muscle attenuation (MA) in soleus and tibialis anterior (TA) muscles measured by CT with intra‐ and extramyocellular lipids (IMCL and EMCL, respectively) measured by MRS in 51 volunteers (26 to 72 years of age, BMI = 25.5 to 39.3 kg/m2). MA of midthighs was also measured in a subset (n = 19). Test—retest measurements were performed by CT (n = 6) and MRS (n = 10) in separate sets of volunteers. Results: MA of soleus was significantly associated with IMCL (r = ?0.64) and EMCL, which by multiple regression analysis was explained mostly by IMCL (p < 0.001) rather than EMCL (β = ?0.010, p = 0.94). Muscle triglyc‐eride was lower in TA than in soleus, and MA of TA was significantly correlated with EMCL (r = ?0.40) but not IMCL (r = ?0.16). By CT, MA of midthighs was correlated with MA in soleus (r = 0.40, p = 0.07) and whole calf (r = 0.62, p < 0.05). Finally, both MA and IMCL were highly reliable in soleus (coefficient of variation = <2% and 6.7%, respectively) and less reliable in TA (4% and 10%, respectively). Discussion: These results support the use of both CT and MRS as reliable methods for assessing skeletal muscle lipid.  相似文献   

15.
16.
Belly traits including predicted fat percentage of the belly (FATPC), combined area of the rib bone and muscle (RBMA), intermuscular fat area (IMFA) and subcutaneous fat area (SFA) were recorded on 2403 pigs along with carcase fat depth at the P2 site (P2). Belly traits were derived from image analysis of the anterior side of pork bellies. Further data available for pigs with belly data and their contemporaries included lifetime growth rate, ultrasound backfat and loin muscle depth (35 406 records), along with meat quality traits (3935 records). There were 4586 feed intake records and 18 398 juvenile insulin-like growth factor-I (IGF-I) records available, which included the majority of pigs with belly data. Genetic parameters were estimated based on an animal model using Residual Maximum Likelihood procedures. Heritability estimates for belly traits ranged from 0.23 to 0.34 (±0.05 to 0.06) while the common litter effect varied from 0.04 to 0.07 (±0.03). Genetic correlations between FATPC, individual belly fat measurements and carcase P2 fat depth differed significantly from unity, ranging from 0.71 to 0.85 (±0.05 to 0.08). Genetic correlations between IMFA and subcutaneous fat measurements varied from 0.47 to 0.63 (±0.08 to 0.13). Genetic correlations between belly and performance traits show that selection for reduced juvenile-IGF-I, reduced feed intake and reduced backfat along with increased loin muscle depth will reduce overall fat levels in the belly. Only loin muscle depth had a significant genetic correlation with RBMA (0.32 ± 0.10), thereby assisting selection for improved lean meat content of the belly. Ultimately, genetic improvement of belly muscles requires specific measurements of lean meat content of the belly. For this to be effective, measurements are required that can be routinely recorded on the slaughter line, or preferably on the live animal.  相似文献   

17.
The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound – US), ‘photon’ radiation (X-ray-computed tomography – CT, dual-energy X-ray absorptiometry – DXA) or radio frequency waves (magnetic resonance imaging – MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号