首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipid-anchored Ras oncoproteins assemble into transient, nano-sized substructures on the plasma membrane. These substructures, called nanoclusters, were proposed to be crucial for high-fidelity signal transmission in cells. However, the molecular basis of Ras nanoclustering is poorly understood. In this work, we used coarse-grained (CG) molecular dynamics simulations to investigate the molecular mechanism by which full-length H-ras proteins form nanoclusters in a model membrane. We chose two different conformations of H-ras that were proposed to represent the active and inactive state of the protein, and a domain-forming model bilayer made up of di16:0-PC (DPPC), di18:2-PC (DLiPC) and cholesterol. We found that, irrespective of the initial conformation, Ras molecules assembled into a single large aggregate. However, the two binding modes, which are characterized by the different orientation of the G-domain with respect to the membrane, differ in dynamics and organization during and after aggregation. Some of these differences involve regions of Ras that are important for effector/modulator binding, which may partly explain observed differences in the ability of active and inactive H-ras nanoclusters to recruit effectors. The simulations also revealed some limitations in the CG force field to study protein assembly in solution, which we discuss in the context of proposed potential avenues of improvement.  相似文献   

2.
Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the “hydration force,” though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.  相似文献   

3.
Supported lipid bilayers are widely used for sensing and deciphering biomolecular interactions with model cell membranes. In this paper, we present a method to form supported lipid bilayers from total lipid extracts of Escherichia coli by vesicle fusion. We show the validity of this method for different types of extracts including those from deuterated biomass using a combination of complementary surface sensitive techniques; quartz crystal microbalance, neutron reflection and atomic force microscopy. We find that the head group composition of the deuterated and the hydrogenated lipid extracts is similar (approximately 75% phosphatidylethanolamine, 13% phosphatidylglycerol and 12% cardiolipin) and that both samples can be used to reconstitute high-coverage supported lipid bilayers with a total thickness of 41 ± 3 Å, common for fluid membranes. The formation of supported lipid bilayers composed of natural extracts of Escherichia coli allow for following biomolecular interactions, thus advancing the field towards bacterial-specific membrane biomimics.  相似文献   

4.
We consider the effect of cross-linking a small fraction of lipids, either saturated or unsaturated, in a mixture of saturated and unsaturated lipids and cholesterol. The change in phase behavior is examined utilizing a recent phenomenological model of the ternary system, which is extended to include a fourth component representing the cross-linked lipids. These lipids are taken to be identical to monomeric ones except for their reduced entropy of mixing. We find that even a relatively small amount of cross-linked lipids, less than 5 mol %, is sufficient to significantly expand the range of compositions within which there is coexistence between liquid-ordered and liquid-disordered phases. Equivalently, the cross-linking of lipids increases the liquid-liquid miscibility transition temperature, and therefore could bring about phase separation at a temperature at which, before cross-linking, there was only a single liquid phase.  相似文献   

5.
Sphingolipids with long chain bases hydroxylated at the C4 position are a requisite for the yeast, Saccharomyces cerevisia, to be sensitive to the ion channel forming antifungal agent, syringomycin E (SRE). A mutant S. cerevisiae strain, Δsyr2, having sphingolipids with a sphingoid base devoid of C4-hydroxylation, is resistant to SRE. To explore the mechanism of this resistance, we investigated the channel forming activity of SRE in lipid bilayers of varying composition. We found that the addition of sphingolipid-rich fraction from Δsyr2 to the membrane-forming solution (DOPS/DOPE/ergosterol) resulted in lipid bilayers with lower sensitivity to SRE compared with those containing sphingolipid fraction from wild-type S. cerevisiae. Other conditions being equal, the rate of increase of bilayer conductance was about 40 times slower, and the number of SRE channels was about 40 times less, with membranes containing Δsyr2 versus wild-type sphingolipids. Δsyr2 sphingolipids altered neither SRE single channel conductance nor the gating charge but the ability of SRE channels to open synchronously was diminished. The results suggest that the resistance of the Δsyr2 mutant to SRE may be partly due to the ability of sphingolipids without the C4 hydroxyl group to decrease the channel forming activity of SRE.  相似文献   

6.
The surface lipids of Nicotiana benthamiana contained novel glycerolipids and several varieties of glycolipids. As glycerolipids, the triacylglycerol, 1,3-diacylglycerol, and 1,2-diacylglycerol types of glycerolipids were isolated and identified. Each lipid contained acetyl, 16–methylheptadecanoyl, and 18–methylnonadecanoyl moieties. The acetylated position of each lipid was determined by 2D-NMR, using the HMBC technique. The structures were 1,3-di-O-acetyl-2-O-acylglycerol, 1-O-acetyl-3-O-acylglycerol, and 1-O-acetyl-2-O-acylglycerol. As glycolipids, one glucose ester and four types of sucrose esters were isolated and identified. These glycolipids contained acetic acid and such branched short-chain fatty acids as 5-methylhexanoic, 4-methylhexanoic, 6-methylheptanoic, and 5-methylheptanoic acids. The structure of the glucose ester was 3,4-di-O-acyl-α-D-glucopyranose. The structures of the sucrose esters were 6-O-acetyl-4-O-acyl-α-D-glucopyranosyl-(3-O-acyl)-β-D-fructofuranoside, 4-O-acyl-α-D-glucopyranosyl-(3-O-acyl)-β-D-fructofuranoside, 3,4-di-O-acyl-α-D-glucopyranosyl-β-D-fructofuranoside, and 6-O-acetyl-α-D-glucopyranosyl-β-D-fructofuranoside.  相似文献   

7.
We present what is, to our knowledge, the first experimental demonstration of dielectric constant measurement and quantification of supported lipid bilayers in electrolyte solutions with nanoscale spatial resolution. The dielectric constant was quantitatively reconstructed with finite element calculations by combining thickness information and local polarization forces which were measured using an electrostatic force microscope adapted to work in a liquid environment. Measurements of submicrometric dipalmitoylphosphatidylcholine lipid bilayer patches gave dielectric constants of εr ∼ 3, which are higher than the values typically reported for the hydrophobic part of lipid membranes (εr ∼ 2) and suggest a large contribution of the polar headgroup region to the dielectric response of the lipid bilayer. This work opens apparently new possibilities in the study of biomembrane electrostatics and other bioelectric phenomena.  相似文献   

8.
We report results of a partitioning study of 2,3,4,6-tetrachlorophenol (TeCP). In the study we explored (1) the effect of the length of acyl chains of lipids (C16:1 – C24:1) and alkanes (C6–C16), (2) the role of the carbonyl group of lipids, and (3) the effect of molecular structure of the sarcoplasmic reticulum membrane on TeCP partitioning. Mole fraction partition coefficients have been measured using equilibrium dialysis for un-ionized (HA), and ionized (A) species, KpxHA, KpxA. Their values are concentration-dependent. Partition coefficients were analyzed in terms of a model that accounts for saturation of membrane associated with the finite area of partition site, and electrostatic interactions of (A-) species with charged membrane. Limiting values of partition coefficients, corresponding to infinite dilution of solute, Kpx0HA, Kpx0A were obtained. Kpx0HA and Kpx0A measure the strength of solute-membrane interactions. Studies were done with single-layered vesicles of lipids with variable chain length: 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (C16:1), 1,2-dioleoyl-sn-glycero-3-phosphocholine (C18:1), 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22:1), and 1 ,2-dinervonoyl-sn-glycero-3-phosphocholine (C24:1), and egg-PC. Kpx0 for transfer of TeCP from water into lipid membranes was found to be independent of the length of acyl chains, whereas Kpx0 for transfer from water into alkanes increased with the length of alkane. The effect of the carbonyl CO group of lipids on partitioning was measured using 1,2-di-o-octadecenyl-sn-glycero-3-phosphocholine (CO absent) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (CO present) liposomes. Carbonyl groups, known to change dipolar potential, had no effect on partitioning. Partition coefficients of un-ionized and ionized forms of TeCP were invariant to the presence of proteins and other membrane components of sarcoplasmic reticulum (SR) membrane.  相似文献   

9.
Artificial lipid membranes are widely used as a model system to study single ion channel activity using electrophysiological techniques. In this study, we characterize the properties of the artificial bilayer system with respect to its dynamics of lipid phase separation using single-molecule fluorescence fluctuation and electrophysiological techniques. We determined the rotational motions of fluorescently labeled lipids on the nanosecond timescale using confocal time-resolved anisotropy to probe the microscopic viscosity of the membrane. Simultaneously, long-range mobility was investigated by the lateral diffusion of the lipids using fluorescence correlation spectroscopy. Depending on the solvent used for membrane preparation, lateral diffusion coefficients in the range Dlat = 10-25 μm2/s and rotational diffusion coefficients ranging from Drot = 2.8 − 1.4 × 107 s−1 were measured in pure liquid-disordered (Ld) membranes. In ternary mixtures containing saturated and unsaturated phospholipids and cholesterol, liquid-ordered (Lo) domains segregated from the Ld phase at 23°C. The lateral mobility of lipids in Lo domains was around eightfold lower compared to those in the Ld phase, whereas the rotational mobility decreased by a factor of 1.5. Burst-integrated steady-state anisotropy histograms, as well as anisotropy imaging, were used to visualize the rotational mobility of lipid probes in phase-separated bilayers. These experiments and fluorescence correlation spectroscopy measurements at different focal diameters indicated a heterogeneous microenvironment in the Lo phase. Finally, we demonstrate the potential of the optoelectro setup to study the influence of lipid domains on the electrophysiological properties of ion channels. We found that the electrophysiological activity of gramicidin A (gA), a well-characterized ion-channel-forming peptide, was related to lipid-domain partitioning. During liquid-liquid phase separation, gA was largely excluded from Lo domains. Simultaneously, the number of electrically active gA dimers increased due to the increased surface density of gA in the Ld phase.  相似文献   

10.
SGTx1 is a gating-modifier toxin that has been shown to inhibit the voltage-gated potassium channel Kv2.1. SGTx1 is thought to bind to the S3b-S4a region of the voltage-sensor, and is believed to alter the energetics of gating. Gating-modifier toxins such as SGTx1 are of interest as they can be used to probe the structure and dynamics of their target channels. Although there are experimental data for SGTx1, its interaction with lipid bilayer membranes remains to be characterized. We performed atomistic and coarse-grained molecular dynamics simulations to study the interaction of SGTx1 with a POPC and a 3:1 POPE/POPG lipid bilayer membrane. We reveal the preferential partitioning of SGTx1 into the water/membrane interface of the bilayer. We also show that electrostatic interactions between the charged residues of SGTx1 and the lipid headgroups play an important role in stabilizing SGTx1 in a bilayer environment.  相似文献   

11.
12.
Following the study of total lipid and phospholipid contents of Harderian gland, we carried out analysis of glycolipid fractions. The data showed that most of the pigment is bound to mono-hexose ceramides, while only a minor fraction of it is bound to ceramides and/or to phospholipids. Histochemical studies confirmed the lipid and glycolipid nature of the Harder's gland secretion. The presence of mono-hexose ceramides linked to the characteristic fluorescent porphyrin was shown.  相似文献   

13.
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions.  相似文献   

14.
Formation of a water bridge across the lipid bilayer is the first stage of pore formation in molecular dynamic (MD) simulations of electroporation, suggesting that the intrusion of individual water molecules into the membrane interior is the initiation event in a sequence that leads to the formation of a conductive membrane pore. To delineate more clearly the role of water in membrane permeabilization, we conducted extensive MD simulations of water bridge formation, stabilization, and collapse in palmitoyloleoylphosphatidylcholine bilayers and in water–vacuum–water systems, in which two groups of water molecules are separated by a 2.8 nm vacuum gap, a simple analog of a phospholipid bilayer. Certain features, such as the exponential decrease in water bridge initiation time with increased external electric field, are similar in both systems. Other features, such as the relationship between water bridge lifetime and the diameter of the water bridge, are quite different between the two systems. Data such as these contribute to a better and more quantitative understanding of the relative roles of water and lipid in membrane electropore creation and annihilation, facilitating a mechanism-driven development of electroporation protocols. These methods can be extended to more complex, heterogeneous systems that include membrane proteins and intracellular and extracellular membrane attachments, leading to more accurate models of living cells in electric fields.  相似文献   

15.
The widely used hydrophobic cannabinoid ligand CP-55,940 partitions with high efficiency into biomembranes. We studied the location, orientation, and dynamics of CP-55,940 in POPC bilayers by solid-state NMR. Chemical-shift perturbation of POPC protons from the aromatic ring-current effect, as well as 1H NMR cross-relaxation rates, locate the hydroxyphenyl ring of the ligand near the lipid glycerol, carbonyls, and upper acyl-chain methylenes. Order parameters of the hydroxyphenyl ring determined by the 1H-13C DIPSHIFT experiment indicate that the bond between the hydroxyphenyl and hydroxycyclohexyl rings is oriented perpendicular to the bilayer normal. 2H NMR order parameters of the nonyl tail are very low, indicating that the hydrophobic chain maintains a high level of conformational flexibility in the membrane. Lateral diffusion rates of CP-55,940 and POPC were measured by 1H magic-angle spinning NMR with pulsed magnetic field gradients. The rate of CP-55,940 diffusion is comparable to the rate of lipid diffusion. The magnitude of cross-relaxation and diffusion rates suggests that associations between CP-55,940 and lipids are with lifetimes of a fraction of a microsecond. With its flexible hydrophobic tail, CP-55,940 may efficiently approach the binding site of the cannabinoid receptor from the lipid-water interface by lateral diffusion.  相似文献   

16.
Escherichia coli TolC assembles into the unique channel-tunnel structure spanning the outer membrane and periplasmic space. The structure is constricted only at the periplasmic entrance of the tunnel and this must be opened to allow export of substrates bound by cognate inner membrane complexes. We have investigated the electrophysiological behavior of TolC reconstituted into planar lipid bilayers, in particular the influence of the membrane potential, the electrolyte concentration and pH. TolC inserted in one orientation into the membrane. The resultant pores were stable and showed no voltage-dependent opening or closing. Nevertheless, TolC could adopt up to three conductance substates. The pores were cation-selective with a permeability ratio of potassium to chloride ions of 16.5. The single-channel conductance was higher when the protein was inserted from the side with negative potential. It showed a nonlinear dependence on the concentration of the electrolyte in the bulk solution and decreased as the pH was lowered. The calculated pK of the apparent closing was 4.5. The electrophysiological characterization is discussed in relation to the TolC structure, in particular the periplasmic entrance.  相似文献   

17.
Interactions of monomeric alpha-synuclein (αS) with lipid membranes have been suggested to play an important role in initiating aggregation of αS. We have systematically analyzed the distribution and self-assembly of monomeric αS on supported lipid bilayers. We observe that at protein/lipid ratios higher than 1:10, αS forms micrometer-sized clusters, leading to observable membrane defects and decrease in lateral diffusion of both lipids and proteins. An αS deletion mutant lacking amino-acid residues 71–82 binds to membranes, but does not observably affect membrane integrity. Although this deletion mutant cannot form amyloid, significant amyloid formation is observed in the wild-type αS clusters. These results suggest that the process of amyloid formation, rather than binding of αS on membranes, is crucial in compromising membrane integrity.  相似文献   

18.
19.
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes.  相似文献   

20.
Interactions of monomeric alpha-synuclein (αS) with lipid membranes have been suggested to play an important role in initiating aggregation of αS. We have systematically analyzed the distribution and self-assembly of monomeric αS on supported lipid bilayers. We observe that at protein/lipid ratios higher than 1:10, αS forms micrometer-sized clusters, leading to observable membrane defects and decrease in lateral diffusion of both lipids and proteins. An αS deletion mutant lacking amino-acid residues 71–82 binds to membranes, but does not observably affect membrane integrity. Although this deletion mutant cannot form amyloid, significant amyloid formation is observed in the wild-type αS clusters. These results suggest that the process of amyloid formation, rather than binding of αS on membranes, is crucial in compromising membrane integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号