首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study aimed at determining the effect of protein type and indigestible carbohydrates on the concentration of microbial metabolites in the large intestine of pigs. The experiment involved 36 pigs (15 kg initial body weight) divided into six groups, fed cereal-based diets with highly digestible casein (CAS) or potato protein concentrate (PPC) of lower ileal digestibility. Each diet was supplemented with cellulose, raw potato starch or pectin. After 2 weeks of feeding, pigs were sacrificed and samples of caecal and ascending, transverse and descending colon digesta were collected for analyses of microbial metabolites. PPC increased the concentration of ammonia, p-cresol, indole, n-butyrate, isovalerate and most of the amines in comparison with CAS. Pectin reduced the production of p-cresol, indole, phenylethylamine and isovalerate in the large intestine compared with potato starch. Starch and pectin increased mainly the concentration of n-butyrate and n-valerate in the colon compared to cellulose. Interaction affected mainly amines. Feeding PPC diet with potato starch considerably increased putrescine, cadaverine, tyramine and total amines concentrations compared with PPC diets with pectin and cellulose, whereas feeding CAS diet with starch reduced their concentrations. There was also a significant effect of interaction between diet and intestinal segment on microbial metabolites. In conclusion, PPC intensifies proteolysis in the large intestine and also n-butyrate production. Raw starch and pectin similarly increase n-butyrate concentration but pectin inhibits proteolysis more efficiently than starch. The interactive effects of both factors indicate that pectin and cellulose may beneficially affect fermentative processes in case of greater protein flow to the large intestine.  相似文献   

2.
Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α-amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens-mediated transformation, to create a plant with the ability to self-process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near-term energy crop should be considered.  相似文献   

3.
This study assessed the long-term effects of feeding diets containing either a gelling fibre (alginate (ALG)), or a fermentable fibre (resistant starch (RS)), or both, on feeding patterns, behaviour and growth performance of growing pigs fed ad libitum for 12 weeks. The experiment was set up as a 2×2 factorial arrangement: inclusion of ALG (yes or no) and inclusion of RS (yes or no) in the control diet, resulting in four dietary treatments, that is, ALG−RS− (control), ALG+RS−, ALG−RS+, and ALG+RS+. Both ALG and RS were exchanged for pregelatinized potato starch. A total of 240 pigs in 40 pens were used. From all visits to an electronic feeding station, feed intake and detailed feeding patterns were calculated. Apparent total tract digestibility of energy, dry matter (DM), and CP was determined in week 6. Pigs’ postures and behaviours were scored from live observations in weeks 7 and 12. Dietary treatments did not affect final BW and average daily gain (ADG). ALG reduced energy and DM digestibility (P<0.01). Moreover, ALG increased average daily DM intake, and reduced backfat thickness and carcass gain : digestible energy (DE) intake (P<0.05). RS increased feed intake per meal, meal duration (P<0.05) and inter-meal intervals (P=0.05), and reduced the number of meals per day (P<0.01), but did not affect daily DM intake. Moreover, RS reduced energy, DM and CP digestibility (P<0.01). Average daily DE intake was reduced (P<0.05), and gain : DE intake tended to be increased (P=0.07), whereas carcass gain : DE intake was not affected by RS. In week 12, ALG+RS− increased standing and walking, aggressive, feeder-directed, and drinking behaviours compared with ALG+RS+ (ALG×RS interaction, P<0.05), with ALG−RS− and ALG−RS+ in between. No other ALG×RS interactions were found. In conclusion, pigs fed ALG compensated for the reduced dietary DE content by increasing their feed intake, achieving similar DE intake and ADG as control pigs. Backfat thickness and carcass efficiency were reduced in pigs fed ALG, which also showed increased physical activity. Pigs fed RS changed feeding patterns, but did not increase their feed intake. Despite a lower DE intake, pigs fed RS achieved similar ADG as control pigs by increasing efficiency in DE use. This indicates that the energy utilization of RS in pigs with ad libitum access to feed is close to that of enzymatically digestible starch.  相似文献   

4.
Deterioration of the environment in which piglets are housed after weaning induces a moderate inflammatory response and modifies tryptophan (Trp) metabolism that can, in turn, decrease Trp availability for growth. We hypothesised that a Trp supply above the current recommendations may be required to preserve Trp availability and to maximise the growth of pigs suffering from moderate inflammation. The aim of this experiment was to compare growth performance and plasma concentrations of Trp and some of its metabolites in piglets, suffering or not from moderate inflammation, when they were fed diets containing graded levels of standardised ileal digestible (SID) Trp, obtained with the addition of crystalline l-Trp to the same basal diet (15%, 18%, 21% or 24%, relative to SID lysine). Differences in inflammatory status were obtained by housing the pigs under different sanitary conditions. Forty blocks of four littermate piglets each were selected and weaned at 4 weeks of age. The experimental design consisted of a split plot where the housing conditions (moderate inflammation v. control) were used as the main plot and dietary Trp content as the subplot. Body weight gain and feed intake were recorded 3, 5 and 7 weeks after weaning. Blood was sampled 13, 36 and 43 days after weaning to measure plasma concentrations of Trp, kynurenine and nicotinamide (i.e. two metabolites of Trp catabolism) and haptoglobin, a major acute phase protein in pigs. There was no interaction between dietary Trp and inflammatory status, irrespective of the response criterion. Compared with control pigs, pigs housed in poor housing conditions consumed less feed (P < 0.0001), had a lower growth rate (P < 0.001), higher plasma concentrations of haptoglobin (P < 0.05) and lower concentrations of plasma Trp irrespective of the Trp content in the diet. Increasing the Trp content in the diet improved feed intake (P < 0.05), growth rate and feed/gain (P < 0.05), but did not prevent the deterioration of performance induced by moderate inflammation because of poor housing conditions. The results of this study suggest that an inflammatory response caused by poor housing sanitary conditions altered Trp metabolism and growth performance, but this was not prevented by additional dietary crystalline l-Trp.  相似文献   

5.
This paper investigates spent litter from deep litter piggery housing as a potential substrate for farm-scale anaerobic digestion. Degradability and degradation rates were evaluated under mesophilic conditions for unused, lightly soiled (used by weaner/small pigs), and heavily soiled (used by finishing/large pigs) wheat straw, barley straw, and rice husks bedding. Apparent first order hydrolysis rate coefficients varied, but were comparable across all samples analysed (<0.1 day?1). Spent wheat straw was generally more degradable (approximately 60%) than spent barley straw, while spent barley straw was comparable to raw straw (40–50%), but with higher hydrolysis rates, indicating better accessibility. Rice husks were relatively poorly degradable (<20%), but degradability was improved by weathering in a pig shed. Digestion of spent barley and wheat straw litter was significantly faster (approximately twice the rate) at low (8% solids) than high (14% solids) solids loading. Rice husks degradation kinetics were not significantly influenced by solids concentration. Intrinsic methanogenic activity of heavily soiled spent wheat straw and rice husks bedding was initially poor, but achieved full activity after 40–60 days, indicating that reactor operation without external inoculum may be possible with care.  相似文献   

6.
In pigs, the microbial ecosystem of the gastrointestinal tract (GIT) is influenced by various factors; however, variations in diet composition have been identified as one of the most important determinants. Marked changes in fermentation activities and microbial ecology may occur when altering the diet, for example, from milk to solid feed during weaning. In that way, access of pathogens to the disturbed ecosystem is alleviated, leading to infectious diseases and diarrhea. Thus, there is increasing interest in improving intestinal health by use of dietary ingredients suitable to beneficially affect the microbial composition and activity. For example, fermentable carbohydrates have been shown to promote growth of beneficial Lactobacillus species and bifidobacteria, thereby enhancing colonization resistance against potential pathogens or production of short-chain fatty acids, which can be used as energy source for epithelial cells. On the other hand, fermentation of protein results in the production of various potentially toxic products, such as amines and NH3, and is often associated with growth of potential pathogens. In that way, excessive protein intake has been shown to stimulate the growth of potentially pathogenic species such as Clostridium perfringens, and to reduce fecal counts of beneficial bifidobacteria. Therefore, it seems to be a promising approach to support growth and metabolic activity of the beneficial microbiota by developing suitable feeding strategies. For example, a reduction of dietary CP content and, at the same time, dietary supplementation with fermentable carbohydrates have proven to successfully suppress protein fermentation. In addition, the intestinal microbiota seems to be sensible to variations in dietary protein source, such as the use of highly digestible protein sources may reduce growth of protein-fermenting and potentially pathogenic species. The objective of the present review is to assess the impact of dietary protein on microbiota composition and activity in the GIT of piglets. Attention will be given to studies designed to determine the effect of variations in total protein supply, protein source and supplementation of fermentable carbohydrates to the diet on composition and metabolic activity of the intestinal microbiota.  相似文献   

7.
L-type amino acid transporter-1 (LAT1) transports large, branched-chain, aromatic and neutral amino acids. About 64 Duroc × Landrace × Yorkshire pigs were used to study the effects of dietary crude protein (CP), energy and arginine on LAT1 expression in forebrain. The results showed that LAT1 expression in forebrain was sensitive to different levels of CP, energy and arginine. On the basis of Western blot analysis, a lower level of LAT1 presented in the brain tissues of pigs fed the low dietary CP diet (P < 0.05), a higher level were found in pigs fed the higher CP diet, with moderate to intense staining seen in pigs fed the diet plus 1% arginine. In contrast, pigs fed the control-energy diet had weak LAT1 expression, and those fed the diet supplemented with 1% arginine showed lowest LAT1 expression (P < 0.05). These results showed that LAT1 was highly expressed in the forebrain, and expression of LAT1 was affected by dietary protein, energy and arginine differently.  相似文献   

8.
Although both non-starch polysaccharides (NSP) and resistant starches (RS) are included in current definitions of dietary fibre, our previous work has suggested fundamental differences in the way in which these two classes of material affect the disposition and absorption of a dietary carcinogen. The present studies explore whether different effects on carcinogen metabolism could play a role in the contrasting patterns seen previously. Groups of female Wistar rats were pre-fed for 4 weeks one of five types of defined diet (AIN-76). The control diet contained 35% maize starch and no dietary fibre. The RS-containing diets had all the maize starch substituted with either Hi-maize or potato starch. In the NSP-containing diets, 10% of the maize starch was substituted with dietary fibre in the form of either lignified plant cell walls (wheat straw) or soluble dietary fibre (apple pectin). Pre-fed rats were gavaged with the food carcinogen, [2-14C] 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and plasma and urinary metabolites characterized using HPLC at various time intervals after administration. After 4 h gavage, plasma from rats on both RS-containing diets contained significantly higher levels of intact IQ and lower levels of the major metabolites, IQ-5-O-glucuronide and IQ-5-sulfate, as compared with plasma from the negative control group at this time. In contrast, plasma from animals on the NSP-containing wheat straw diet (and to a lesser extent the apple pectin diet) showed significantly lower levels of intact IQ, and significantly higher levels of the two major metabolites, as compared with those from the control rats. These different metabolite profiles were also reflected in different urinary excretion profiles. Urine from rats pre-fed RS-containing diets revealed significantly slower metabolite excretion as compared with urine from rats that had been given the NSP-containing diets. Western blotting methodologies also profiled differences between the effects of these two types of dietary fibre in the expression of xenobiotic metabolizing enzymes. We conclude that changes in activity and expression of xenobiotic metabolising enzymes could play a role in the contrasting effects of these two types of dietary fibre on carcinogen uptake and disposition.  相似文献   

9.
This study aimed to assess the effects of (1) environmental enrichment with either straw bedding or a plastic toy and (2) the way in which the plastic toy was presented on the behaviour of finishing pigs in two different housing systems. One thousand and twenty four (Large White × Landrace) × Large White pigs were housed contemporarily in either a straw-based (ST) or fully slatted (FS) building from 35 kg to slaughter at 104 kg. In each building, half of the pens received additional environmental enrichment in the form of a hanging plastic toy. The remaining pens in the ST house were enriched only by the straw bedding. In the FS house, the remaining pens were provided with a rootable toy of the same plastic material presented on the floor of the pen. There was no significant effect of housing system on the level of manipulation of the hanging toy. Within the FS system, the level of manipulation of the hanging toy tended to be higher than that of the plastic toy presented on the floor (P = 0.052). Neither form of additional environmental enrichment provided a comparable level of occupation to that of straw bedding. In the absence of straw, more investigatory behaviours were directed towards both pen-mates (P < 0.001) and pen components (P < 0.001). Further study is required to identify functional forms of environmental enrichment in slatted systems to occupy pigs and prevent them from performing adverse behaviours.  相似文献   

10.
In vitro gas production studies are routinely used to assess the metabolic capacity of intestinal microbiota to ferment dietary fibre sources. The faecal inocula used during the in vitro gas production procedure are most often obtained from animals adapted to a certain diet. The present study was designed to assess whether 19 days of adaptation to a diet are sufficient for faecal inocula of pigs to reach a stable microbial composition and activity as determined by in vitro gas production. Eighteen multiparous sows were allotted to one of two treatments for three weeks: a diet high in fibre (H) or a diet low in fibre (L). After this 3-week period, the H group was transferred to the low fibre diet (HL-treatment) while the L group was transferred to the diet high in fibre (LH-treatment). Faecal samples were collected from each sow at 1, 4, 7, 10, 13, 16 and 19 days after the diet change and prepared as inoculum used for incubation with three contrasting fermentable substrates: oligofructose, soya pectin and cellulose. In addition, inocula were characterised using a phylogenetic microarray targeting the pig gastrointestinal tract microbiota. Time after diet change had an effect (P<0.05) on total gas production for the medium–fast fermentable substrates; soya pectin and oligofructose. For the more slowly fermentable cellulose, all measured fermentation parameters were consistently higher (P<0.05) for animals in the HL-treatment. Diet changes led to significant changes in relative abundance of specific bacteria, especially for members of the Bacteroidetes and Bacilli, which, respectively, increased or decreased for the LH-treatment, while changes were opposite for the HL-treatment. Changing the diet of sows led to changes in fermentation activity of the faecal microbiota and in composition of the microbiota over time. Adaptation of the microbiota as assessed by gas production occurred faster for LH-animals for fast fermentable substrates compared with HL-animals. Overall, adaptation of the large intestinal microbiota of sows as a result of ingestion of low and high fibre diets seems to take longer than 19 days, especially for the ability to ferment slowly fermentable substrates.  相似文献   

11.
Potato pulp is a high-volume, low-value byproduct stream resulting from the industrial manufacture of potato starch. The pulp is a rich source of biologically functional dietary fibers, but the targeted valorisation of the fibers requires removal of the residual starch from the pulp. The objective of this study was to release the residual starch, making up 21–22% by weight of the dry matter, from the potato pulp in a rational way employing as few steps, as few enzyme activities, as low enzyme dosages, as low energy input (temperature and time), and as high pulp dry matter as possible. Starch removal to obtain dietary fibers is usually accomplished via a three step, sequential enzymatic treatment procedure using a heat stable α-amylase, protease, and amyloglucosidase. Statistically designed experiments were performed to investigate the influence of enzyme dose, amount of dry matter, incubation time and temperature on the amount of starch released from the potato pulp. The data demonstrated that all the starch could be released from potato pulp in one step when 8% (w/w) dry potato pulp was treated with 0.2% (v/w) (enzyme/substrate (E/S)) of a thermostable Bacillus licheniformis α-amylase (Termamyl® SC) at 70 °C for at least 65 min. The study also indicated that the amount of other carbohydrates released from the pulp during the release of starch was less than using the AOAC Official Method 985.29 and another recently published starch release method employed as a pretreatment for enzymatic upgrading of a pectinaceous potato pulp fiber.  相似文献   

12.
Requirements for energy and particular amino acids (AAs) are known to be influenced by the extent of immune system stimulation. Most studies on this topic use models for immune system stimulation mimicking clinical conditions. Extrapolation to conditions of chronic, low-grade immune system stimulation is difficult. We aimed to quantify differences in maintenance energy requirements and efficiency of energy and protein used for growth (incremental energy and protein efficiency) of pigs kept under low (LSC) or high sanitary conditions (HSC) that were fed either a basal diet or a diet with supplemented AA. Twenty-four groups of six 10-week-old female pigs were kept under either LSC or HSC conditions for 2 weeks and fed a diet supplemented or not with 20% extra methionine, threonine and tryptophan. In week 1, feed was available ad libitum. In week 2, feed supply was restricted to 70% of the realized feed intake (kJ/(kg BW)0.6 per day) in week 1. After week 2, fasting heat production (FHP) was measured. Energy balances and incremental energy and protein efficiencies were measured and analyzed using a GLM. Low sanitary condition increased FHP of pigs by 55 kJ/(kg BW)0.6 per day, regardless of diet. Low sanitary condition did not alter the response of faecal energy output to incremental gross energy (GE) intake, but it reduced the incremental response of metabolizable energy intake (12% units), heat production (6% units) and energy retained as protein (6% units) to GE intake, leaving energy retained as fat unaltered. Incremental protein efficiency was reduced in LSC pigs by 20% units. Incremental efficiencies for energy and protein were not affected by dietary AA supplementation. Chronic, low-grade immune stimulation by LSC treatment increases FHP in pigs. Under such conditions, the incremental efficiency of nitrogen utilization for body protein deposition is reduced, but the incremental efficiency of absorbed energy for energy or fat deposition is unaffected.  相似文献   

13.
In order to study the effects of a small difference in starch and nitrogen availability on proteolysis, two different diets were supplied to four ewes fitted with rumen fistulae. They differed in the ratio of fermentable nitrogen over fermentable energy. with 144 g of fermentable nitrogen (FN) per kg of fermentable energy (FE) for diet I and 126 g FN x kg(-1) FE for diet II. The diets were constituted of 700 g hay grass, 200 g ground pea and either 100 g ground wheat (diet I) or 100 g corn starch (diet II). After two weeks of an adapting period to the diets, rumen content was sampled after feeding over time. The rate of disappearance of soluble proteins was 2.5 times higher with diet II and ammonia concentrations were significantly lower (from -28 to -43%) with diet II. Total proteolytic activity, by considering all the bacterial compartments, was significantly higher with diet II (+40 EU/mL x h(-1)): changes in the total proteolytic activity in the particulate and the liquid phases of the rumen could explain the difference observed between the two diets. Moreover, with diet II, exopeptidase activities increased more in the liquid phase, especially leucine aminopeptidase and Dipeptidyl peptidase I (DPP-I), and the diversity of endopeptidase activities increased in the particulate phase. These two facts could account for the higher total proteolytic activity in the rumen content with diet II.  相似文献   

14.

Background  

A study was designed to elucidate effects of selected carbohydrates on composition and activity of the intestinal microbiota. Five groups of eight rats were fed a western type diet containing cornstarch (reference group), sucrose, potato starch, inulin (a long- chained fructan) or oligofructose (a short-chained fructan). Fructans are, opposite sucrose and starches, not digestible by mammalian gut enzymes, but are known to be fermentable by specific bacteria in the large intestine.  相似文献   

15.
Dietary energy source can influence muscle glycogen storage at slaughter. However, few studies have demonstrated whether the diet-induced change of muscle glycogen is achieved by the transformation of muscle fibre type. This study investigated the effects of dietary energy sources on meat quality, post mortem glycolysis and muscle fibre type transformation of finishing pigs. Seventy-two barrows with an average body weight of 65.0 ± 2.0 kg were selected and were allotted to three iso-energetic and iso-nitrogenous diets A, B or C, and each treatment consisted of three replicates (pens) of eight pigs each. Diet A contained 44.1% starch, 5.9% crude fat and 12.6% neutral detergent fiber (NDF); diet B contained 37.6% starch, 9.5% crude fat and 15.4% NDF; and diet C contained 30.9% starch, 14.3% crude fat and 17.8% NDF. The duration of the experiment was 28 days. After feed withdrawal 12 h, 24 pigs (eight per treatment) were slaughtered, samples from M. longissimus lumborum (LL) were collected for subsequent analysis. The results showed that pigs fed diet C had lesser average daily gain, average daily feed intake and back fat depth than those fed diet A (P<0.05). Diet C increased pH45min (P<0.05) and decreased drip loss (P<0.05) in LL muscles compared with diet A. Meat from pigs fed diet A showed increased contents of lactate and greater glycolytic potential (GP) compared with those fed diet C (P<0.05). Greater mRNA expression of myosin heavy-chain (MyHC)-I and IIa and lesser expression of MyHC-IIx and IIb (P<0.05) in LL muscles were found in pigs fed diet C, than in pigs fed diet A. In addition, pigs fed diet C resulted in downregulation of miR23a and upregulation of miR409 and miR208b (P<0.05), associated with conserved changes of their corresponding targets. These findings indicated that diets containing low starch and high fibre were beneficial in reducing muscle glycolysis, improving meat quality of finishing pigs. This reduction of GP may be partially associated with the improvement of oxidative fibre composition in LL muscle, and the change in myofibre type may be correlated with the change in the miRNA expression.  相似文献   

16.
Dietary effects on the host are mediated via modulation of the intestinal mucosal responses. The present study investigated the effect of an enzymatically modified starch (EMS) product on the mucosal expression of genes related to starch digestion, sugar and short-chain fatty acid (SCFA) absorption and incretins in the jejunum and cecum in growing pigs. Moreover, the impact of the EMS on hepatic expression of genes related to glucose and lipid metabolism, and postprandial serum metabolites were assessed. Barrows (n=12/diet; initial BW 29 kg) were individually fed three times daily with free access to a diet containing either EMS or waxy corn starch as control (CON) for 10 days. The enzymatic modification led to twice as many α-1,6-glycosidic bonds (~8%) in the amylopectin fraction in the EMS in comparison with the non-modified native waxy corn starch (4% α-1,6-glycosidic bonds). Linear discriminant analysis revealed distinct clustering of mucosal gene expression for EMS and CON diets in jejunum. Compared with the CON diet, the EMS intake up-regulated jejunal expression of sodium-coupled monocarboxylate transporter (SMCT), glucagon-like peptide-1 (GLP1) and gastric inhibitory polypeptide (GIP) (P<0.05) and intestinal alkaline phosphatase (ALPI) (P=0.08), which may be related to greater luminal SCFA availability, whereas cecal gene expression was unaffected by diet. Hepatic peroxisome proliferator-activated receptor γ (PPARγ) expression tended (P=0.07) to be down-regulated in pigs fed the EMS diet compared with pigs fed the CON diet, which may explain the trend (P=0.08) of 30% decrease in serum triglycerides in pigs fed the EMS diet. Furthermore, pigs fed the EMS diet had a 50% higher (P=0.03) serum urea concentration than pigs fed the CON diet potentially indicating an increased use of glucogenic amino acids for energy acquisition in these pigs. Present findings suggested the jejunum as the target site to influence the intestinal epithelium and altered lipid and carbohydrate metabolism by EMS feeding.  相似文献   

17.
The co-products from the industry are used to reduce costs in pig diets. However, the co-products used in pig diets are limited because of a high fibre content which is not digested by endogenous enzymes and is resistant to degradation in the small and large intestines. The aim of this study was to investigate digestibility of nutrients and energy, and energy utilisation in pigs fed diets with various soluble and insoluble dietary fibre (DF) from co-products. The experiment was performed as a 4 × 4 Latin square design (four diets and four periods) using four growing pigs (66.2 ± 7.8 kg) surgically fitted with a T-cannula in the end of the small intestine. The pigs were fed four experimental diets: low-fibre control (LF), high-fibre control (HF), high-soluble fibre (HFS) and high-insoluble fibre (HFI) diets. The apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of ash, organic matter, CP, fat, carbohydrates, starch and non-starch polysaccharides (NSP) divided into cellulose and soluble and insoluble non-cellulosic polysaccharide residues were measured using chromic oxide as marker. The recovery of total solid materials, organic matter and total carbohydrates in ileal digesta in pigs fed the HF and HFS diets was higher than in pigs fed LF and HFI, whereas recovery of organic matter and total carbohydrates in faecal materials in the HFS diet was lowest (P < 0.05). AID of organic matter, total carbohydrates and starch was lowest for HFS diet (P < 0.05). ATTD of organic matter and CP was higher for LF diet compared with other diets (P < 0.05), whereas total NSP, cellulose and non-cellulosic polysaccharides residues were highest for HFS diet (P < 0.05). Lactic acid in ileal digesta was influenced by dietary composition (P < 0.05) whereas neither type nor level of DF affected short chain fatty acids. The digestible energy, metabolisable energy, net energy and retained energy intake were similar among diets without influence of DF inclusion (P > 0.05). The metabolisable energy:digestible energy ratio was lower when feeding the HFS diet because of a higher fermentative methane loss. Faecal nitrogen and carbon were positively correlated with DM intake and insoluble DF in the diets (P < 0.05), but nitrogen and carbon (% of intake) were similar among diets. The present findings suggest that high-DF co-products can be used as ingredients of pig diets when features of DF are considered.  相似文献   

18.
19.
A 2 × 2 factorial experiment was conducted to investigate the interaction between high and low dietary crude protein (CP) (200 v. 150 g/kg) and sugar-beet pulp (SBP) (200 v. 0 g/kg) on nutrient digestibility, nitrogen (N) excretion, intestinal fermentation and manure ammonia and odour emissions from 24 boars (n = 6, 74.0 kg live weight). The diets were formulated to contain similar concentrations of digestible energy (13.6 MJ/kg) and lysine (10.0 g/kg). Pigs offered SBP-containing diets had a reduced (P < 0.05) digestibility of dry matter, ash, N, gross energy and an increased (P < 0.001) digestibility of neutral-detergent fibre compared with pigs offered diets containing no SBP. There was an interaction between CP and SBP on urinary N excretion and the urine : faeces N ratio. Pigs offered the 200 g/kg CP SBP-based diet had reduced urine : faeces N ratio (P < 0.05) and urinary N excretion (P < 0.05) compared with those offered the 200 g/kg CP diet without SBP. However, there was no effect of SBP in pigs offered 150 g/kg CP diets. Manure ammonia emissions were reduced by 33% from 0 to 240 h (P < 0.01); however, odour emissions were increased by 41% (P < 0.05) when pigs were offered SBP diets. Decreasing dietary CP to 150 g/kg reduced total N excretion (P < 0.001) and ammonia emissions from 0 to 240 h (P < 0.05). There was an interaction between dietary CP and SBP on branched-chain fatty acids (P < 0.001) in caecal digesta. Pigs offered the 200 g/kg CP SBP-containing diet reduced branched-chain fatty acids in the caecum compared with pigs offered the 200 g/kg CP diet containing no SBP. However, there was no effect of SBP in the 150 g/kg CP diet. In conclusion, pigs offered SBP-containing diets had a reduced manure ammonia emissions and increased odour emissions compared with diets containing no SBP. Pigs offered the 200 g/kg CP SBP-containing diet had a reduced urine : faeces N ratio and urinary N excretion compared with those offered the 200 g/kg CP diet containing no SBP.  相似文献   

20.
Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号