首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The conformational analysis of the DNA structural unit--the nucleotide with thymine base and electroneutral phosphate group at 5'-position-has been carried out with the applied quantum mechanics methods at the MP2/6-311++G(d,p) // B3LYP/6-31G(d,p) theory level. As many as 660 conformations with relative Gibbs energies under standard conditions from 0 to 11.1 kcal/mole have been found. Among them, six conformations are similar to the structure of the nucleotide of AI-DNA, one--to AII- and seven--to the DNA in BI-form. The lowest Gibbs energy among the DNA-like conformations (deltaG = 2.7 kcal/mole) belongs to BI-DNA-like structure. It is shown that the glycoside chemical bond is the most labile one. The role of intramolecular CH...O hydrogen bonds in formation of the 5'-thymidilic acid molecule structure is demonstrated.  相似文献   

2.
The crystal structure of 5-nitrouridine was determined by X-ray analysis. The pyrimidine ring is slightly non-planar, showing a shallow boat conformation. The nitro group has no influence on the C4 - O4 bond length as compared to uridine. The ribose shows the C3'-endo conformation and the base is in the anti orientation to the sugar with a torsion angle of 25.6 degrees. This conformation is stabilized by a hydrogen bond from the base to the ribosyl moiety (H6 ... 05'). Stacking interactions between neighboring bases are almost negligible in the crystal. A water molecule is involved in a bifurcated donating hydrogen bond to 04 and to 052 of the nitro group of the one base and an accepting bond from the H3 of the other base. Two more hydrogen bonds are formed between the water molecule and the ribose. The structural aspects of 5-nitrouridine are discussed with respect to the special stacking features found for 5-nitro-1-(beta-D-ribosyluronic acid)-uracil monohydrate in the crystal (1).  相似文献   

3.
The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2'endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and riboguanosine residues in nucleosides and nucleotides prefer the syn-C2'endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5'-H and the N3 of the base and, a few syn-C3'endo conformations are also observed. Evidence is presented for the occurrence of the C3'endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4'-C5' and P-O5' bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3'endo conformation and the distorted backbone sugar-phosphate bonds (C4'-C5' and P-O5') as in the earlier right-handed case.  相似文献   

4.
The Aib-D Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III β-turns. The occurrence of prime turns facilitates the formation of β-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-DAla-Leu-Phe-Val-OMe (1) has been previously shown to form a β-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx=DAla, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD3OH) and non-hydrogen bonding (CDCl3) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-DAla-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl3 and β-hairpin conformations in CD3 OH. The β-turn conformations (type-I'/III) stabilized by intramolecular 4→1 hydrogen bonds are observed for the peptide Boc-Aib-D Ala-NHMe (4) and Boc-Aib-Aib-NHMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4→1 hydrogen bonds. The peptide Boc-Val-Aib-DAla-Leu-NHMe (3) adopts a novel α-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4→1 and one 5→1). The Aib-DAla segment adopts a type-I' β-turn conformation. The observation of an NOE between Val (1) NH?HNCH3 (5) in CD3OH suggests, that the solid state conformation is maintained in methanol solutions.  相似文献   

5.
The binding of cis-Pt(II) diammine (cis-DP) to double-stranded DNA was studied with several kinked conformations that can accommodate the formation of a square planar complex. Molecular mechanics (MM) calculations were performed to optimize the molecular fit. These results were combined with quantum mechanical (QM) calculations to ascertain the relative energetics of ligand binding through water vs direct binding of the phosphate to the ammine and platinum, and to guide the selection of DNA conformations to model complex formation. Based on QM and MM calculations, models are proposed that may be characterized by several general features. A structure involving hydrogen bonding between each ammine and distinct adjacent phosphate groups, referred to as closed conformation (CC), has already been reported. This is also found in the crystal structure of small dimers. We report alternative conformations that may be important in platination of duplex DNA. They are characterized by an intermediate conformation (IC), involving hydrogen bonding between one ammine and phosphate group, and an open conformation (OC), without ammine phosphate hydrogen bonding. The IC and OC can be stabilized by water bridges in the space between the ammine and the phosphate groups. Sugar puckers alternate from the type C(2')-endo or C(1')-exo (S), to the type C(3')-endo or C(2')-exo (N), with intermediate types near O(1')-endo (O). In general, the sugar puckers alternate from S to N to S through the platinated region (3'-TpG*pG*p-5'), with the complexed strand exhibiting, (3')-S*-N*-S-(5') alternation, while the complementary strand shows either (3')-S*-N*-S-(5') or (3')-S*-N*-O-(5') alternation. In both the OC and IC, a hydrogen bond is found between the ammine and O4(T) on thymine (T) at the (3') end, adjacent to the complex site. There is a continuous range of backbone conformations through the platinated region which relate the OC to the IC. The models presented suggest that the dynamics of the binding of the cis-Pt(II)-diammines to adjacent N7(G) in double-stranded DNA may encompass several conformational possibilities, and that water bridges may play a roll in supporting open and intermediate conformations. Proton-proton distances are reported to assist in the experimental determination of conformations.  相似文献   

6.
Three D structures of chitosan   总被引:6,自引:0,他引:6  
Crystal structures of two polymorphs of chitosan, tendon (hydrated) and annealed (anhydrous) polymorphs, have been reported. In both crystals, chitosan molecule takes up similar conformation (Type I form) to each other, an extended two-fold helix stabilized by intramolecular O3-O5 hydrogen bond, which is also similar to the conformation of chitin or cellulose. Three chitosan conformations other than Type I form have been found in the crystals of chitosan-acid salts. In the salts with acetic and some other acids, called Type II salts, chitosan molecule takes up a relaxed two-fold helix composed of asymmetric unit of tetrasaccharide. This conformation seems to be unstable because no strong intramolecular hydrogen bond like Type I form. Type II crystal changes to the annealed polymorph of chitosan by a spontaneous water-removing action of the acid. Chitosan molecule in its hydrogen iodide salt prepared at low temperature takes a 4/1 helix with asymmetric unit of disaccharide. The fourth chitosan conformation was found to be a 5/3 helix in chitosan salts with medical organic acids having phenyl group such as salicylic or gentisic acids. Similar conformation of chitosan molecule in the aspirin (acetylsalicylic acid) salt was suggested by a solid-sate NMR measurement.  相似文献   

7.
The pyrimidine antimetabolite Ftorafur [FT; 5-fluoro-1-(tetrahydro-2-furyl)uracil] has shown significant antitumor activity in several adenocarcinomas with a spectrum of activity similar to, but less toxic than, 5-fluorouracil (5-FU). It is considered as a prodrug that acts as a depot form of 5-FU, and hence the two drugs exhibit a similar spectrum of chemotherapeutic activity. Ftorafur is metabolized in animals and humans when hydroxyl groups are introduced into the tetrahydrofuran moiety. These metabolites are also thought to be as active as ftorafur but less toxic than 5-FU. Hydroxyl derivatives: 2'-hydroxyftorafur (III), 3'-hydroxyftorafur (IV) and 2',3'-dihydroxyftorafur (II) were synthesized and X-ray and NMR studies of these hydroxyl derivatives were undertaken in our laboratories to study the structural and conformational features of Ftorafur and its metabolites in the solid and solution states. X-ray crystallographic investigations were carried out with data collected on a CAD-4 diffractometer. The structures were solved and refined using the SDP crystallographic package of Enraf-Nonius on PDP 11/34 and Microvax computers. All of the compounds studied had the base in the anti conformation. The glycosidic torsion angles varied from -20 to 60 degrees. There is an inverse correlation between the glycosyl bond distances and the chi angle. Molecules with a lower chi angle have a larger bond distance and vice versa. The sugar rings show a wide variation of conformations ranging from C2'-endo through C3'-endo to C4'-exo. The crystal structures are stabilized by hydrogen bonds involving the base nitrogen atom N3 and the hydroxyl oxygen atoms of the sugar rings as donors and the keto oxygens O2 and O4 of the base and the hydroxyl oxygen atoms O2' and O3' as acceptors. The NMR studies were carried out on Brüker 400 and 600 MHz instruments. Simulated proton spectra were obtained through Laocoon, and pseudorotational parameters were solved by Pseurot. Presence of syn or anti forms was demonstrated with the use of NOE experiments. The glycosyl conformations in solution vary more widely than in the solid state. The conformations of the sugar molecules are in agreement with the values obtained in the solid state. The studies of the structure and conformation in the solid and solution states give a model for the Ftorafur molecule that could be used in structure, function and biological activity correlation studies.  相似文献   

8.
Y Yamagata  K Kohda    K Tomita 《Nucleic acids research》1988,16(19):9307-9321
O6-Methylation of guanine residues in DNA can induce mutations by formation of base mispairing due to the deprotonation of N(1). The electronic, geometric and conformational properties of three N(9)-Substituted O6-methylguanine derivatives, O6-methyldeoxyguanosine (O6mdGuo), O6-methylguanosine (O6mGuo) and O6, 9-dimethylguanine (O6mdGua), were investigated by X-ray and/or NMR studies. O6mdGuo crystallizes in the monoclinic space group P2(1) with cell parameters a = 5.267(1), b = 19.109(2), c = 12.330(2) A, beta = 92.45(1) degrees, V = 1239.8(3) A3, z = 4 (two nucleosides per asymmetric unit), and O6mGua in the monoclinic space group P2(1)/n with cell parameters a = 10.729(2), b = 7.640(1) c = 10.216(1) A, beta = 92.17(2) degrees, V = 836.7(2) A3, z = 4. The geometry and conformation of O6-methylguanine moieties observed in both crystals and are very similar. Furthermore, the molecular dimensions of the O6methylguanine residue resemble more closely those of adenine than those of guanine. The methoxy group is coplanar with the purine ring, the methyl group being cis to N(1). The conformation of O6-methylguanine nucleosides is variable. The glycosidic conformation of O6mdGuo is anti for molecule (a) and high-anti for molecule (b) in the crystal, while that of O6mGuo is syn [Parthasarathy, R & Fridey, S. M. (1986) Carcinogenesis 7, 221-227]. The sugar ring pucker of O6mdGuo is C(2')-endo for molecule (a) and C(1')-exo for molecule (b). The C(4')-C(5') exocyclic bond conformation in O6mdGuo is gauche- for molecule (a) but trans for molecule (b), in contrast with gauche+ for O6mGuo. The hydrogen bonds exhibited by O6-methylguanine derivatives differ from those in guanine derivatives; the amino N(2) and ring N(3) and N(7) atoms of O6-methylguanine residues are involved in hydrogen bonding. 1H-NMR data for O6mdGuo and O6mdGuo reveal the predominance of a C(2')-endo type sugar puckering. In O6mdGuo, however, a contribution of a C(1')-exo sugar puckering is significant. The NOE data also indicate that O6mdGuo molecules exist with nearly equal population for anti (including high anti) and syn glycosidic conformations. These observations and their biological implications are discussed.  相似文献   

9.
The crystal and molecular structure of a synthetic mannosyl disaccharide, methyl O-alpha-D-mannopyranosyl-(1----2)-alpha-D-mannopyranoside, has been determined from X-ray diffractometer data by direct methods by use of the Multan programs. The crystals are monoclinic, space group P2 with unit cell dimensions, a 8.086(1), b 9.775(1), c 9.975(2) A, beta 104.58(1) degrees, Z 2, and Dm 1.54 g/cm3. The structure was refined to an R-value of 0.033 for 1359 reflections measured with CuK alpha radiation. The mannopyranose units have the chair conformations 4C(D) with C-5' and C-2' deviating from the best plane through the other four atoms of the ring by -0.68 and +0.53 A in the nonreducing group, and C-3 and O-5 deviating from the mean plane through the other four atoms by +0.57 and -0.66 A, respectively, in the "potentially" reducing residue. The ring-to-ring conformation can be described as (phi, psi) = (-64.5, 105.5 degrees). The conformation across the C-5--C-6 bond is gauche-gauche in both the sugars. The crystal structure is stabilized by a network of intermolecular O-H...O hydrogen bonds.  相似文献   

10.
The crystal structure of beta-D-glucopyranosyl-(1-->4)-alpha-D-glucopyranose (alpha-cellobiose) in a complex with water and NaI was determined with Mo K(alpha) radiation at 150 K to R=0.027. The space group is P2(1) and unit cell dimensions are a=9.0188, b=12.2536, c=10.9016 A, beta=97.162 degrees. There are no direct hydrogen bonds among cellobiose molecules, and the usual intramolecular hydrogen bond between O-3 and O-5' is replaced by a bridge involving Na+, O-3, O-5', and O-6'. Both Na+ have sixfold coordination. One I(-) accepts six donor hydroxyl groups and three C-H***I(-) hydrogen bonds. The other accepts three hydroxyls, one Na+, and five C-H***I(-) hydrogen bonds. Linkage torsion angles phi(O-5) and psi(C-5) are -73.6 and -105.3 degrees, respectively (phi(H)=47.1 degrees and psi(H)=14.6 degrees ), probably induced by the Na+ bridge. This conformation is in a separate cluster in phi,psi space from most similar linkages. Both C-6-O-H and C-6'-O-H are gg, while the C-6'-O-H groups from molecules not in the cluster have gt conformations. Hybrid molecular mechanics/quantum mechanics calculations show <1.2 kcal/mol strain for any of the small-molecule structures. Extrapolation of the NaI cellobiose geometry to a cellulose molecule gives a left-handed helix with 2.9 residues per turn. The energy map and small-molecule crystal structures imply that cellulose helices having 2.5 and 3.0 residues per turn are left-handed.  相似文献   

11.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

12.
Adriamycin is an anthracycline anticancer drug used widely for solid tumors in spite of its adverse side effects. The solution structure of 2:1 adriamycin-d-(CGATCG)(2) complex has been studied by restrained molecular dynamics simulations. The restraint data set consists of several intramolecular and intermolecular nuclear Overhauser enhancement cross-peaks obtained from two-dimensional nuclear magnetic resonance spectroscopy data. The drug is found to intercalate between CG and GC base pairs at two d-CpG sites. The drug-DNA complex is stabilized via specific hydrogen bonding and van der Waal's interactions involving 4OCH(3), O5, 6OH, and NH(3)(+) moiety of daunosamine sugar, and rings A protons. The O-glycosidic bond C7-O7-C1'-C2' lies in the range 138 degrees -160 degrees during the course of simulations. The O6-H6...O5 hydrogen bond is stable while O11-H11...O12 hydrogen bond is not favored. The intercalating base pairs are buckled and minor groove is wider in the complex. The phosphate on one strand at intercalation site C1pG2 is in B(I) conformation and the phosphates directly lying on opposite strand is in B(II) conformation. The phosphorus on adjacent site G2pA3 is in B(II) conformation and hence a distinct pattern of B(I) and B(II) conformations is induced and stabilized. The role of various functional groups by which the molecular action is mediated has been discussed and correlated to the available biochemical evidence.  相似文献   

13.
Mismatch repair proteins, DNA damage-recognition proteins and translesion DNA polymerases discriminate between Pt-GG adducts containing cis-diammine ligands (formed by cisplatin (CP) and carboplatin) and trans-RR-diaminocyclohexane ligands (formed by oxaliplatin (OX)) and this discrimination is thought to be important in determining differences in the efficacy, toxicity and mutagenicity of these platinum anticancer agents. We have postulated that these proteins recognize differences in conformation and/or conformational dynamics of the DNA containing the adducts. We have previously determined the NMR solution structure of OX-DNA, CP-DNA and undamaged duplex DNA in the 5'-d(CCTCAGGCCTCC)-3' sequence context and have shown the existence of several conformational differences in the vicinity of the Pt-GG adduct. Here we have used molecular dynamics simulations to explore differences in the conformational dynamics between OX-DNA, CP-DNA and undamaged DNA in the same sequence context. Twenty-five 10 ns unrestrained fully solvated molecular dynamics simulations were performed starting from two different DNA conformations using AMBER v8.0. All 25 simulations reached equilibrium within 4 ns, were independent of the starting structure and were in close agreement with previous crystal and NMR structures. Our data show that the cis-diammine (CP) ligand preferentially forms hydrogen bonds on the 5' side of the Pt-GG adduct, while the trans-RR-diaminocyclohexane (OX) ligand preferentially forms hydrogen bonds on the 3' side of the adduct. In addition, our data show that these differences in hydrogen bond formation are strongly correlated with differences in conformational dynamics, specifically the fraction of time spent in different DNA conformations in the vicinity of the adduct, for CP- and OX-DNA adducts. We postulate that differential recognition of CP- and OX-GG adducts by mismatch repair proteins, DNA damage-recognition proteins and DNA polymerases may be due, in part, to differences in the fraction of time that the adducts spend in a conformation favorable for protein binding.  相似文献   

14.
Conformations of arabino nucleosides and nucleotides have been analyzed by semiempirical energy calculations. It is found that the change in the configuration of the O(2')-hydroxyl group in arabinoses compared to riboses exerts significant influence on the conformational priorities of the glycosyl and the exocyclic C(4')-C(5') bond torsions. While the anti conformations for the bases are preferred, the anti in equilibrium or formed from syn interconversion is considerably hampered compared to ribosides due to large energy barrier. Further the preferred anti glycosyl torsions are shifted to higher values for C(3')-endo puckers and in ribosides. While the gauche+ conformation around the C(4')-C(5') bond is favored for C(3')-endo arabinosides, it is strongly stabilized for C(2')-endo arabinosides only in the presence of the intrasugar hydrogen bond O(2')-H ... O(5'). The net attractive electrostatic interactions between the phosphate and the base stabilizes the preferred conformations of 5'-arabinonucleotides also.  相似文献   

15.
Comprehensive conformational analysis of the biologically active nucleoside 2',3'-didehydro-2',3'-dideoxyadenosine (d4A) has been performed at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. The energetic, geometrical and polar characteristics of twenty one d4A conformers as well as their conformational equilibrium were investigated. The electron density topological analysis allowed us to establish that the d4A molecule is stabilized by eight types of intramolecular interactions: O5'H...N3, O5'H...C8, C8H...O5', C2'H...N3, C5'H1...N3, C5'H2...N3 Ta C8H...H1/2C5'. The obtained results of conformational analysis lead us to think that d4A may be a terminator of the DNA chain sythesis in the 5'-3' direction. Thus it can be inferred that d4A competes with canonical 2'-deoxyadenosine in binding an active site of the corresponding enzyme.  相似文献   

16.
Kurihara Y  Ueda K 《Carbohydrate research》2006,341(15):2565-2574
The interconversion pathways of the pyranose ring conformation of alpha-L-idose from a (4)C1 chair to other conformations were investigated using density functional calculations. From these calculations, four different ring interconversion paths and their transition state structures from the (4)C1 chair to other conformations, such as B(3,O), and (1)S3, were obtained. These four transition-state conformations cover four possible combinations of the network patterns of the hydroxyl group hydrogen bonds (clockwise and counterclockwise) and the conformations of the primary alcohol group (tg and gg). The optimized conformations, transition states, and their intrinsic reaction coordinates (IRC) were all calculated at the B3LYP/6-31G** level. The energy differences among the structures obtained were evaluated at the B3LYP/6-311++G** level. The optimized conformations indicate that the conformers of (4)C1, (2)S(O), and B(3,O) have similar energies, while (1)S3 has a higher energy than the others. The comparison of the four transition states and their ring interconversion paths, which were confirmed using the IRC calculation, suggests that the most plausible ring interconversion of the alpha-L-idopyranose ring occurs between (4)C1 and B(3,O) through the E3 envelope, which involves a 5.21 kcal/mol energy barrier.  相似文献   

17.
The calculation of the complete spatial structure of the bee venom peptide neurotoxin apamin has been carried out by means of a method elaborated earlier. It is based on the joint utilization of the molecular mechanics algorithms and NMR spectroscopy data. It was established that the molecule backbone conformation in solution may be represented as the combination of the beta-turn III (residues 2-5) and alpha-helical segment (9-18) both separated by the non-standard bend IV (5-8). The most probable system of the intramolecular hydrogen bonds in the apamin polypeptide backbone was proposed. Certain amino acid residues have been shown to be characterized by the lack of strict determination of the conformations of their side chains which may be realized in a few states providing approximately equal stabilization of the same form of the main chain. The conformational parameters of the proposed apamin structural model are appropriate to the NMR spectroscopy data derived from the literature and used in the calculations and are not contradictory to other experimental information.  相似文献   

18.
Conformational studies of -glucans   总被引:1,自引:0,他引:1  
A study of the effect of linkage on the possible conformations of di-and polysaccharides of α-D -glucose and also the probable intramolecular hydrogen bonds has been made. The differences in the nature of linkage is shown to effect the energetically preferred conformations; (1 → 2) linkages lead only to righthanded helical conformations, (1 → 3) linkages lead to extended as well as both left and righthanded helical conformations; (1 → 4) linkages lead to both right-and lefthanded wide helical conformations. The possible hydrogen bonds between adjacent residues are also dependent on the nature of the linkage. A comparison of the conformational data of α-D -glucans with those of β-D -glucans has indicated that the favored conformations and hydrogen bonds between contiguous residues in the chain are influenced by the configuration at the anomeric carbon atom in all the three types of polysaccharides. From the energy calculations a probable conformation (?M = ?10°, ψM = ?30°, ?N = ?23°, ψN = ?19°) has also been proposed for crystalline mycodextran in conformity with x-ray data. This conformation contains two types of hydrogen bonds between contiguous residues one between 0–2 and 0–3 atoms at (1 → 4) linkage and the other between 0?2 and 0–4 atoms at (1 → 3) linkage in the chain. The conformation of maltose unit (?10°,?30°) that is likely to occur in the crystalline mycodextran coincides with the minimum energy conformation of maltose.  相似文献   

19.
The stereochemically constrained gamma amino acid residue gabapentin (1-(aminomethyl)cyclohexaneacetic acid, Gpn) has been incorporated into a host alpha-peptide sequence. The structure of a hybrid alphagammaalphaalphagammaalpha peptide, Boc-Leu-Gpn-Aib-Leu-Gpn-Aib-OMe in crystals reveals a continuous helical conformation stabilized by three intramolecular 4 --> 1 C(12) hydrogen bonds across the alphagamma/alphagamma segments and one C(10) hydrogen bond across the central alphaalpha segment. This conformation corresponds to an expanded analog of the canonical all-alpha polypeptide 3(10)-helix, with insertion of two additional backbone atoms at each gamma residue. Solvent dependence of NH chemical shifts in CDCl(3) solution are consistent with conformation in which the NH groups of Aib (3), Leu (4), Gpn (5), and Aib (6) are hydrogen bonded, a feature observed in the solid state. The nonsequential NOEs between Gpn (2) NH <--> Leu (4) NH and Gpn (2) NH <--> Gpn (5) NH support the presence of additional conformations in solution. Temperature-dependent line broadening of NH resonances confirms the occurrence of rapid exchange between multiple conformations at room temperature. Two conformational models which rationalize the observed nonsequential NOEs are presented, both of which contain three hydrogen bonds and are consistent with the known stereochemical preferences of the Gpn residue.  相似文献   

20.
Burkard ME  Turner DH 《Biochemistry》2000,39(38):11748-11762
Nucleotides in RNA that are not Watson-Crick-paired form unique structures for recognition or catalysis, but determinants of these structures and their stabilities are poorly understood. A single noncanonical pair of two guanosines (G) is more stable than other noncanonical pairs and can potentially form pairing structures with two hydrogen bonds in four different ways. Here, the energetics and structure of single GG pairs are investigated in several sequence contexts by optical melting and NMR. The data for r(5'GCAGGCGUGC3')(2), in which G4 and G7 are paired, are consistent with a model in which G4 and G7 alternate syn glycosidic conformations in a two-hydrogen-bond pair. The two distinct structures are derived from nuclear Overhauser effect spectroscopic distance restraints coupled with simulated annealing using the AMBER 95 force field. In each structure, the imino and amino protons of the anti G are hydrogen bonded to the O6 and N7 acceptors of the syn G, respectively. An additional hydrogen-bond connects the syn G amino group to the 5' nonbridging pro-R(p) phosphate oxygen. The GG pair fits well into a Watson-Crick helix. In r(5'GCAGGCGUGC3')(2), the G4(anti), G7(syn) structure is preferred over G4(syn), G7(anti). For single GG pairs in other contexts, exchange processes make interpretation of spectra more difficult but the pairs are also G(syn), G(anti). Thermodynamic data for a variety of duplexes containing pairs of G, inosine, and 7-deazaguanosine flanked by GC pairs are consistent with the structural and energetic interpretations for r(5'GCAGGCGUGC3')(2), suggesting similar GG conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号