首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have quantified the natural mating system in eight populations of the simultaneously hermaphroditic aquatic snail Lymnaea stagnalis, and studied the ecological and genetic forces that may be directing mating system evolution in this species. We investigated whether the natural mating system can be explained by the availability of mates, by the differential survival of self- and cross-fertilized snails in nature, and by the effects of mating system on parental fecundity and early survival. The natural mating system of L. stagnalis was found to be predominantly cross-fertilizing. Density of snails in the populations had no relationship with the mating system, suggesting that outcrossing rates are not limited by mate availability at the population densities observed. Contrary to expectations for outcrossing species, we detected no evidence for inbreeding depression in survival in nature with inferential population genetic methods. Further, experimental manipulations of mating system in the laboratory revealed that self-fertilization had no effect on parental fecundity, and only minor effects on offspring survival. Predominance of cross-fertilization despite low apparent fitness costs of self-fertilization is at odds with the paradigm that high self-fertilization depression is necessary for maintenance of cross-fertilization in self-compatible hermaphrodites.  相似文献   

2.
Sexual dimorphism is commonly used as evidence of the behavior of extinct species. Even so, few analyses scrutinize whether extant comparative data support inferences of mating systems or behavior in extinct species. This analysis evaluates the relations between measures of dimorphism and several estimates of mating system and intrasexual competition. Dimorphism alone provides poor resolution for reconstructing behavior. Many behavioral inferences based on perceived dimorphism are not supported by extant comparative data. This reflects the large standard errors of relations between dimorphism estimates and behavioral classifications. Used with caution, dimorphism can provide a hint of the behavior of extinct species in some cases. However, in many cases inferred dimorphism allows little more than an inference of polygyny, without any indication of specific types of mating systems.  相似文献   

3.
In Drosophila species of the obscura group, males exhibit sperm-heteromorphism, simultaneously producing both long sperm, capable of fertilization, and short sperm that are not. The production of multiple sperm types calls into question whether mating system correlates, such as sperm length and number trade-offs and female remating behavior, are the same as previously described in sperm-monomorphic systems. We examine three obscura group species, D. pseudoobscura, D. persimilis, and D. affinis that differ significantly in the lengths of their long fertilizing sperm, to test predictions about the relationship between sperm length and four mating system characters: male age at sexual maturity; sperm number; female remating; and male reproductive output. In D. affinis, where males produce the longest fertilizing sperm, their sexual maturity is delayed and they produce fewer long sperm compared to the other two species, as predicted if long sperm are costly to produce. Female D. affinis, although they receive fewer sperm than females of the other two species, do not remate more frequently or produce fewer progeny from a single mating. Different responses between sperm-heteromorphic and sperm-monomorphic systems underscore the complex nature of the coevolution between male and female mating system characters.  相似文献   

4.
In this study we assessed whether sexual selection against hybrids contributes to reproductive isolation between two sympatric stickleback species. The species are recently diverged and possibly in the final stages of speciation. Our aim was to find whether mating discrimination of the parental species selects against F1 hybrids, and what conditions are necessary for such sexual selection to operate. We used conservative no-choice laboratory trials with reproductively naive, lab-reared fish to measure female mating preferences. Females exhibited ranked preferences, preferring in order: conspecific, hybrid, then heterospecific males. However, intermediate attractiveness does not necessarily imply selection against hybrids: two-way ANOVAs suggested that limnetic, benthic, and hybrid males were statistically equivalent when averaged across females. Thus, this experiment found no evidence for a hybrid mating disadvantage. Our interpretation is that if sexual selection against hybrids is present in the wild, then some factor that biases encounter rates between hybrids and parental species (e.g., habitat selection) is necessary to produce it.  相似文献   

5.
Avian spurs   总被引:1,自引:0,他引:1  
Spur size and number in the various species of Galliformes are considered in relation to body size and social system. Spur length is absolutely and relatively greater among large tropical species. Multiple-spurred species are intermediate in size between spurless and single-spurred species, but have longer legs. Possession of spurs is common, and presumably originated among monogamous species, but is still commoner among polygamous ones. Different spur shapes possibly reflect wounding versus stunning strategies of fighting. Wing spurs in other birds are briefly compared.  相似文献   

6.
Angus J. Bateman's classic study of sexual selection in Drosophila melanogaster has had a major influence on the development of sexual selection theory. In some ways, Bateman's study has served a catalytic role by stimulating debate on sex roles, sexual conflict and other topics in sexual selection. However, there is still considerable disagreement regarding whether or not "Bateman's principles" are helpful in the study of sexual selection. Here, we test the idea that Bateman's principles provide the basis for a useful method to quantify and compare mating systems. In this study, we focus on the sex-role-reversed pipefish Syngnathus typhle as a model system to study the measurement of sexual selection. We set up artificial breeding assemblages of pipefish in the laboratory and used microsatellite markers to resolve parentage. Three different sex-ratio treatments (female-biased, even and male-biased) were used to manipulate the expected intensity of sexual selection. Measures of the mating system based on Bateman's principles were calculated and compared to the expected changes in the intensity of sexual selection. We also compare the results of this study to the results of a similar study of Bateman's principles in the rough-skinned newt, a species with conventional sex roles. The results of this experiment show that measures of the mating system based on Bateman's principles do accurately capture the relative intensities of sexual selection in the different treatments and species. Thus, widespread use of Bateman's principles to quantify mating systems in nature would facilitate comparative studies of sexual selection and mating system evolution.  相似文献   

7.
Androdioecy is a mixed‐mating system in which there are males and hermaphrodites but no pure females. Few species exhibit such a mating system. Eulimnadia texana is a branchiopod crustacean that has recently been identified as an androdioecious species. This system is ideal for testing questions related to the evolution of sexual reproduction. We are testing a model that predicts androdioecy to be a stable mixed‐mating system under certain conditions. Specifically, we investigated whether encounters between males and hermaphrodites are random or if either sex seeks out the other for mating. Focal male or hermaphrodite clam shrimp were presented with stimulus shrimp of the other sex or kept alone. Swimming speed and time spent within different areas of a test chamber were recorded. Males did not alter mean swimming speed or spend more time than expected by chance near partitioned hermaphrodites. Hermaphrodites, however, decreased mean swimming speed in the presence of males and also spent more time than expected by chance near partitioned males, suggesting that hermaphrodites respond to male chemical and/or visual stimuli. Modified swimming behaviour probably facilitates inter‐sexual contact, thereby increasing opportunities for out‐crossing above that expected by random encounters.  相似文献   

8.
Variation in the extent of sexual dimorphism among bird species is traditionally attributed to differences in social mating system. However, there are many different forms of dimorphism among birds, and not all of them show an obvious correlation with social mating system. For example, recent work has shown that many highly polygamous species are, in fact, monomorphic, whereas many putatively monogamous species are dimorphic. In this paper we break up sexual dimorphism into subcomponents and then use comparative analyses to examine the pattern of covariation between these subcomponents and various aspects of sexual, social, and parental behaviour. Our first finding is that size dimorphism and plumage-colour dimorphism do not show the same pattern of covariation. Differences in size dimorphism are associated with variation in social mating system and sex differences in parental care, whereas differences in plumage-colour dimorphism are associated with variation in the frequency of extra-bond paternity. These results suggest that size dimorphism is associated with the sort of intrasexual competition described by traditional classifications of social mating system, whereas plumage-colour dimorphism is associated with cryptic female choice. However, when we break up plumage-colour dimorphism according to whether it is due to melanins, carotenoids or structural colours, we find that each category of plumage-colour dimorphism shows a different pattern of covariation. The correlation between overall plumage-colour dimorphism and the rate of extra-bond paternity is due to structural colours, whereas melanin-based dimorphism is associated with sex differences in parental care. The former result is particularly interesting given that new work suggests structural colours are associated with active sexual displays and the reflection of ultraviolet light.  相似文献   

9.
The relatively low degree of canine tooth dimorphism in Australopithecus afarensis has been used as “primary evidence” to support the concept of a mating system of monogamous pair-bonding and male provisioning. A recent field study of woolly spider monkeys shows that these large primates, which lack canine tooth (and body size) dimorphism, are characterized by apolygynous mating system. Male parental care of infants is absent in this species. These data support the view that a lack of canine tooth dimorphism in an anthropoid species does not necessarily imply either a monogamous, pair-bonded mating system or male parental care.  相似文献   

10.
Androdioecy was first described by Darwin in his seminal work on barnacle diversity; he identified males and hermaphrodites in the same reproductive population. Today, we realize that many androdioecious plants and animals share astonishing similarities, particularly with regard to their evolutionary history and mating system. Notably, these species were ancestrally dioecious, and their mating system has the following characteristics: hermaphrodites self‐fertilize frequently, males are more successful in large mating groups, and males have a mating advantage. A male mating advantage makes androdioecy more likely to persist over evolutionary times. Androdioecious barnacles, however, appear to persist as an outlier with a different evolutionary trajectory: they originate from hermaphroditic species. Although sexual systems of androdioecious barnacles are known, no information on the mating system of androdioecious barnacles is available. This study assessed the mating system of the androdioecious barnacle Chelonibia testudinaria. In contrast to other androdioecious species, C. testudinaria does not self‐fertilize, males do not have a mating advantage over hermaphrodites, and the average mating group is quite small, averaging only three individuals. Mating success is increased by proximity to the mate and penis length. Taken together, the mating system of C. testudinaria is unusual in comparison with other androdioecious plants and animals, and the lack of a male mating advantage suggests that the mating system alone does not provide an explanation for the maintenance of androdioecy in this species. Instead, we propose that sex‐specific life history equalizes male and hermaphroditic overall fitness.  相似文献   

11.
Plant mating systems are known to vary within species and some immediate ecological factors have been found to be associated with the geographic distribution of selfing. The environmental condition of the maternal plant may influence the production of selfed seed relative to outcrossed seed. This study investigated the effect of late pollination on the mating system of Kalmia latifolia, a long-lived perennial shrub. A 2 × 2 experimental design was used to determine whether reproductive success declines over the course of the flowering season and whether there was an interaction between pollination time (early vs. late in the season) and pollen type (self-fertilized vs. outcrossed). An interaction of this sort would indicate context-dependent fitness of selfed seeds compared to outcrossed seeds and, thus, show an ecological influence over a plant's mating system. Relative fitness was assessed in terms of female reproductive success. Timing of pollination did not affect abortion of outcrossed seeds; however, delay in pollination increased abortion of selfed seeds by 34.7%. Thus, it appears that plants selectively aborted selfed seeds rather than outcrossed seeds and this selection was more intense at the end of the season. An ecological factor such as time of pollination may affect the mating system of K. latifolia.  相似文献   

12.
Size‐assortative mating is a nonrandom association of body size between members of mating pairs and is expected to be common in species with mutual preferences for body size. In this study, we investigated whether there is direct evidence for size‐assortative mating in two species of pipefishes, Syngnathus floridae and S. typhle, that share the characteristics of male pregnancy, sex‐role reversal, and a polygynandrous mating system. We take advantage of microsatellite‐based “genetic‐capture” techniques to match wild‐caught females with female genotypes reconstructed from broods of pregnant males and use these data to explore patterns of size‐assortative mating in these species. We also develop a simulation model to explore how positive, negative, and antagonistic preferences of each sex for body size affect size‐assortative mating. Contrary to expectations, we were unable to find any evidence of size‐assortative mating in either species at different geographic locations or at different sampling times. Furthermore, two traits that potentially confer a fitness advantage in terms of reproductive success, female mating order and number of eggs transferred per female, do not affect pairing patterns in the wild. Results from model simulations demonstrate that strong mating preferences are unlikely to explain the observed patterns of mating in the studied populations. Our study shows that individual mating preferences, as ascertained by laboratory‐based mating trials, can be decoupled from realized patterns of mating in the wild, and therefore, field studies are also necessary to determine actual patterns of mate choice in nature. We conclude that this disconnect between preferences and assortative mating is likely due to ecological constraints and multiple mating that may limit mate choice in natural populations.  相似文献   

13.
The acquisition of floral nectar spurs is correlated with increased species diversity across multiple clades. We tested whether variation in nectar spurs influences reproductive isolation and, thus, can potentially promote species diversity using two species of Aquilegia, Aquilegia formosa and Aquilegia pubescens, which form narrow hybrid zones. Floral visitors strongly discriminated between the two species both in natural populations and at mixed-species arrays of individual flowers. Bees and hummingbirds visited flowers of A. formosa at a much greater rate than flowers of A. pubescens. Hawkmoths, however, nearly exclusively visited flowers of A. pubescens. We found that altering the orientation of A. pubescens flowers from upright to pendent, like the flowers of A. formosa, reduced hawkmoth visitation by an order of magnitude. In contrast, shortening the length of the nectar spurs of A. pubescens flowers to a length similar to A. formosa flowers did not affect hawkmoth visitation. However, pollen removal was significantly reduced in flowers with shortened nectar spurs. These data indicate that floral traits promote floral isolation between these species and that specific floral traits affect floral isolation via ethological isolation while others affect floral isolation via mechanical isolation.  相似文献   

14.
Reproductive assurance is a widely accepted explanation for the evolution of selfing, although theory suggests that an evolutionarily stable mixed mating strategy does not maximize seed production. We present a correlation analysis involving 28 species representing 23 families showing that selfing can evolve independently of inbreeding depression. We discuss the cost-benefit trade-off of selfing, in particular the incongruence of whether delayed selfing provides reproductive assurance in 22 species representing 14 families, in which pollen and seed discounting are minimized when pollinators or mates are scarce. Reproductive assurance, in response to frequent pollinator failure, can be reconciled with an evolutionarily stable mixed mating system contributed to by delayed selfing, which is still advantageous even if there is strong inbreeding depression.  相似文献   

15.
Although only one or just a few matings are considered sufficient to maximise a female's reproductive success, polyandry is a common mating system in insects and other animals. Female polyandry may either result from direct or indirect benefits of mating multiply, or from male harassment and thus sexual conflict over mating. Here, we test whether the latter is involved in determining female mating frequency in the butterfly Bicyclus anynana. We used a full‐factorial design with three different sex ratios and densities each, resulting in a total of nine treatment groups. Sex ratio but not density affected female mating frequency, which increased with an increasingly male‐biased sex ratio. Our results thus suggest that female polyandry in B. anynana results from sexual conflict, although females seem to be able to reject courting males at least to some extent. Therefore, polyandry in this species may occur in the first place from convenience, as the costs of resisting male harassment may be higher than mating repeatedly.  相似文献   

16.
A number of plant traits influence the success of fertilization and reproduction in plants. Collectively these traits represent ecological syndromes that are of evolutionary significance. However, while an association between mating system and colonizing ability has been proposed, the existence of a broader relationship between mating system and a species’ position in ecological succession has not been extensively investigated. Grime's CSR theory stresses that an ecological succession can involve changes from colonizing to either competitive or stress‐tolerant strategies. How distinct dimensions of competitiveness and stress tolerance covary with mating systems has still not been considered. We designed a comparative approach to evaluate the link between mating system, life form and CSR strategies for 1996 herbaceous and woody species. We found that CSR strategies are significantly related to mating systems. Ruderal species – colonizers in early succession – were mostly selfers while more competitive species were more often outcrossers. On the other hand, greater physiological stress tolerance was associated with mixed mating systems. Outcrossing is classically expected to be advantageous for most life history strategies other than colonizers, but we suggest that reproductive assurance can counterbalance this effect in stressful environments where populations are sparse and pollinators are rare. Therefore, our results emphasize that competition and abiotic stresses are not equivalent selective pressures on the evolution of mating systems. Finally, we found plant life span to convey additional information on mating system variation, supporting its role for mating system evolution. These findings encourage further investigation of the evolutionary role of ecological strategies as syndromes of traits and suggest that the emergence of large databases of plant traits will help address the major evolutionary hypotheses on such syndromes.  相似文献   

17.
Resource availability influences sexual selection within populations and determines whether behaviours such as territoriality or resource sharing are adaptive. In Thoropa taophora, a frog endemic to the Atlantic Coastal Rainforest of Brazil, males compete for and defend limited breeding sites while females often share breeding sites with other females; however, sharing breeding sites may involve costs due to cannibalism by conspecific tadpoles. We studied a breeding population of T. taophora to determine (i) whether this species exhibits polygynous mating involving female choice for territorial males and limited breeding resources; (ii) whether limited breeding resources create the potential for male–male cooperation in defence of neighbouring territories; and (iii) whether females sharing breeding sites exhibit kin‐biased breeding site choice, possibly driven by fitness losses due to cannibalism among offspring of females sharing sites. We used microsatellites to reconstruct parentage and quantify relatedness at eight breeding sites in our focal population, where these sites are scarce, and in a second population, where sites are abundant. We found that at localities where the appropriate sites for reproduction are spatially limited, the mating system for this species is polygynous, with typically two females sharing a breeding site with a male. We also found that females exhibit negative kin‐bias in their choice of breeding sites, potentially to maximize their inclusive fitness by avoiding tadpole cannibalism of highly related kin. Our results indicate that male territorial defence and female site sharing are likely important components of this mating system, and we propose that kinship‐dependent avoidance in mating strategies may be more general than previously realized.  相似文献   

18.
Allometry describes the relationship of components of an organism with change in overall body size and has become the focus of numerous studies on the evolution of genitalia. Typically, negative allometry is observed in insects and is explained by stabilizing selection whereas the very few studies on mammals have shown a positive allometric relationship of genitalia in the body size, thought to have arisen as a result of sexual selection. However, all mammal species studied to date are thought to use mainly post-copulatory mating strategies. Across mammals, however, both pre-and post-copulatory strategies occur (although the two are not mutually exclusive). We propose that where pre-copulatory strategies are mainly used, no reproductive benefits would result from evolving positively allometric genitalia. As such, mammal genitalia are not typically positively allometric but rather allometry will, to a certain degree, be determined by mating strategy. We tested this prediction using four species of African mole rats (Bathyergidae) exhibiting variation in their life histories and mating strategies. Although generally supported, in that positive allometry did not occur in species that we assumed use mainly pre-mating strategies, positive allometry did not occur in either of the promiscuous species thought to use post-copulatory strategies. We suggest, therefore, that while mating strategies may tentatively determine genital allometry, whether positively allometric genitalia occur also depends on a number of complex interacting factors. In addition, this study provides further evidence and empirical support for the co-evolution of male and female genitalia in mammals.  相似文献   

19.
Males can typically increase their lifetime reproductive success by mating with multiple females. However, recent studies across a broad range of species have demonstrated physiological constraints on male multiple mating. In this study, we investigate male mating capacity in Extatosoma tiaratum, a facultative parthenogenetic phasmatid. Sperm limitation is thought to be one factor favouring the evolution and maintenance of parthenogenetic reproduction, but studies on male mating ability in facultative parthenogenetic species are extremely rare. To explore whether male mating success varies with mating history, we provided males with weekly mating opportunities with different females throughout their lives. We then observed mating success, and the variation in ejaculate size and quality within each mating. We showed that most, but not all, males can mate multiply, however the amount of ejaculate produced is variable and depends upon male body mass and mating history.  相似文献   

20.
1. Males with higher mating success would be expected to invest more in traits that facilitate mating, leading to steeper allometry of those traits with respect to body size. Across‐population studies following latitudinal variation in male mating success are an excellent study system to address this question. 2. Males of the damselfly Lestes sponsa were used to investigate whether the allometric patterns of the length and width of the anal appendages, used for grasping the female prior to mating, corresponded to male mating success. Across a large latitudinal gradient, it was hypothesised that there is a larger investment in the grasping apparatus, i.e. a steeper allometric slope, following higher mating success. 3. Behavioural observations in field enclosures showed the highest mating success at high latitude, while there were no significant differences in mating success between the central and low latitudes. Positive allometry was found for the length of the anal appendages in high‐latitude males, while central‐ and low‐latitude males showed no significant regressions of the traits on body size. 4. These results partially support the hypothesis, as high‐latitude, more successful males invested more in the length (but not the width) of the grasping apparatus than did central‐ and low‐latitude males. Therefore, higher mating success might be facilitated by larger investment in armaments. Intraspecific studies on allometric patterns of traits that participate in mating success might offer new insights into the role of those traits in the reproductive behaviour of a species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号