首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bantam microRNA is a target of the hippo tumor-suppressor pathway   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
Big things from a little RNA   总被引:3,自引:0,他引:3  
In a recent study, Brennecke and colleagues show that bantam, a previously elusive Drosophila gene that promotes tissue growth, encodes a microRNA. The bantam microRNA regulates cell number in vivo and inhibits cell death by binding to the mRNA of the pro-apoptotic gene hid. These findings demonstrate that a single, tiny Drosophila RNA can regulate organ and organism size and link the nascent field of microRNA function to the study of pathways that coordinate cell death, cell growth and cell proliferation during the development of metazoan organisms.  相似文献   

4.
5.
6.
7.
8.
The bantam gene regulates Drosophila growth   总被引:9,自引:0,他引:9  
Hipfner DR  Weigmann K  Cohen SM 《Genetics》2002,161(4):1527-1537
We report here the consequences of mutations of a novel locus, named bantam, whose product is involved in the regulation of growth in Drosophila. bantam mutant animals are smaller than wild type, due to a reduction in cell number but not cell size, and do not have significant disruptions in patterning. Conversely, overexpression of the bantam product using the EP element EP(3)3622 causes overgrowth of wing and eye tissue. Overexpression in clones of cells results in an increased rate of cell proliferation and a matched increase in cellular growth rate, such that the resulting tissue is composed of more cells of a size comparable to wild type. These effects are strikingly similar to those associated with alterations in the activity of the cyclinD-cdk4 complex. However, epistasis and genetic interaction analyses indicate that bantam and cyclinD-cdk4 operate independently. Thus, the bantam locus represents a novel regulator of tissue growth.  相似文献   

9.
Subdivision of proliferating tissues into adjacent compartments that do not mix plays a key role in animal development. The Actin cytoskeleton has recently been shown to mediate cell sorting at compartment boundaries, and reduced cell proliferation in boundary cells has been proposed as a way of stabilizing compartment boundaries. Cell interactions mediated by the receptor Notch have been implicated in the specification of compartment boundaries in vertebrates and in Drosophila, but the molecular effectors remain largely unidentified. Here, we present evidence that Notch mediates boundary formation in the Drosophila wing in part through repression of bantam miRNA. bantam induces cell proliferation and we have identified the Actin regulator Enabled as a new target of bantam. Increased levels of Enabled and reduced proliferation rates contribute to the maintenance of the dorsal-ventral affinity boundary. The activity of Notch also defines, through the homeobox-containing gene cut, a distinct population of boundary cells at the dorsal-ventral (DV) interface that helps to segregate boundary from non-boundary cells and contributes to the maintenance of the DV affinity boundary.  相似文献   

10.
11.
微小RNA与细胞凋亡的研究进展   总被引:1,自引:0,他引:1  
Guo L  Ding ZH 《生理科学进展》2007,38(4):331-335
微小RNA(miRNAs)是最近发现的由18~24个核苷酸组成的RNA,通过对目标mRNA的抑制而发挥重要的调节作用。目前所有已研究的多细胞真核生物表明它们是通过miRNAs来调节细胞基本的生理功能,这些功能包括细胞的增殖、分化和死亡。本文讨论了miRNAs在调节细胞增殖和凋亡方面的功能:其中,抗凋亡的miRNAs有miR-17家族、miR-21、bantam和miR-14;促凋亡的miRNAs有let-7、miR-15a和miR-16。  相似文献   

12.
13.
14.
microRNA是近年来发现的与基因表达调控相关的一类非编码小分子单链RNA,长度约21-22个碱基对构成,通过与靶mRNA碱基对特异结合,引起靶mRNA降解或翻译抑制,调控基因转录后的表达。microRNA通过干预基因表达,从而对细胞的分化、增殖、凋亡、新陈代谢等多项生命活动进行调控。microRNA的表达异常可以引起细胞的分化、增殖、凋亡的异常,这与肿瘤的发生、发展关系密切。其作为一个新的分子生物学标志,在肿瘤的诊断、治疗中有着重要的潜在价值。  相似文献   

15.
In Arabidopsis stems, the vascular bundles in the stele are arranged in a ring-like pattern and the vascular tissues in each bundle are organized in a collateral pattern. We have shown previously that the semidominant amphivasal vascular bundle 1 (avb1) mutation transforms the collateral vascular bundles into amphivasal bundles and disrupts the ring-like arrangement of vascular bundles in the stele. In this study, we show that the avb1 mutation occurred in the putative microRNA 165 target sequence in the IFL1/REV gene and caused an amino acid substitution in the putative sterol/lipid-binding START domain. We present direct evidence that the wild-type IFL1/REV mRNA was cleaved within the microRNA 165 target sequence and the avb1 mutation resulted in an inhibition of cleavage and a higher level accumulation of full-length mRNA, suggesting a role of microRNA 165 in the regulation of IFL1/REV gene expression. In addition to an alteration in vascular patterning, the avb1 mutation also caused dramatic changes in fiber cell wall thickening and organ polarity, including aberrant formation and proliferation of cauline leaves and branches, production of trumpet-shaped leaves with reversed adaxial-abaxial identity, ectopic growth of carpel-like structures on the outer surface of carpels, and fasciation of inflorescence. Ectopic overexpression of the avb1 mutant cDNA not only phenocopied most of the avb1 mutant phenotypes but also led to additional novel phenotypes such as formation of leaves with extremely narrow blades and ectopic production of branches in the axil of siliques. Taken together, these results suggest that the avb1 gain-of-function mutation of the IFL1/REV gene alters the positional information that determines vascular patterning and organ polarity.  相似文献   

16.
Many moths use sex pheromones to find their mates in the dark. Their antennae are well developed with lateral branches to receive the pheromone efficiently. However, how these structures have evolved remains elusive, because the mechanism of development of these antennae has not been studied at a molecular level. To elucidate the developmental mechanism of this type of antenna, we observed morphogenesis, cell proliferation, cell death and antennal patterning gene expression in the branched antenna of the silk moth, Bombyx mori. Region-specific cell proliferation and almost ubiquitous apoptosis occur during early pupal stages and appear to shape the lateral branch cooperatively. Antennal patterning genes are expressed in a pattern largely conserved among insects with branchless antennae until the late 5th larval instar but most of them change their expression dramatically to a pattern prefiguring the lateral branch during metamorphosis. These findings imply that although antennal primordium is patterned by conserved mechanisms before metamorphosis, most of the antennal patterning genes are reused to form the lateral branch during metamorphosis. We propose that the acquisition of a new regulatory circuit of antennal patterning genes may have been an important event during evolution of the sensory antenna with lateral branches in the Lepidoptera.  相似文献   

17.
微小RNA(miRNA)是长度为22nt左右的非编码RNA,具有转录后调节的功能,对细胞的增殖、凋亡和分化起到重要作用。胃癌是世界第四大常见肿瘤,高居癌症死亡的第二位。越来越多的研究表明miRNA在肿瘤中起着原癌基因或抑癌基因的作用,本文将阐述miRNA与胃癌的关系的研究进展。  相似文献   

18.
周一萌  高超 《生物磁学》2011,(5):982-985
微小RNA(miRNA)是长度为22nt左右的非编码RNA,具有转录后调节的功能,对细胞的增殖、凋亡和分化起到重要作用。胃癌是世界第四大常见肿瘤,高居癌症死亡的第二位。越来越多的研究表明miRNA在肿瘤中起着原癌基因或抑癌基因的作用,本文将阐述miRNA与胃癌的关系的研究进展。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号