首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysosomal phospholipase A2 (PLA2G15) is a ubiquitous enzyme uniquely characterized by a subcellular localization to the lysosome and late endosome. PLA2G15 has an acidic pH optimum, is calcium independent, and acts as a transacylase in the presence of N-acetyl-sphingosine as an acceptor. Recent studies aided by the delineation of the crystal structure of PLA2G15 have clarified further the catalytic mechanism, sn-1 versus sn-2 specificity, and the basis whereby cationic amphiphilic drugs inhibit its activity. PLA2G15 has recently been shown to hydrolyze short chain oxidized phospholipids which access the catalytic site directly based on their aqueous solubility. Studies on the PLA2G15 null mouse suggest a role for the enzyme in the catabolism of pulmonary surfactant. PLA2G15 may also have a role in host defense and in the processing of lipid antigens for presentation by CD1 proteins. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

2.
H Kunze  B M L?ffler  M Schmidt 《FEBS letters》1988,236(2):388-390
Cultured rat hepatocytes exhibit acid phospholipase A activity. On the basis of product formation from stereospecifically radiolabeled phosphatidylethanolamine substrates, phospholipases A1 and A2 have been identified with optimal activities at pH 4.5. According to subcellular fractionation studies, the acid phospholipases in hepatocytes appear to be located in the lysosomal compartment. Application of specific inhibitors of the biosynthesis, glycosylation, and translocation of lysosomal enzymes in hepatocyte cultures suggests a half-life of approx. 1 day for the acid lysosomal phospholipase A1. About the same value for the half-life was obtained for the lysosomal marker enzymes, acid phosphatase and beta-N-acetyl-D-hexosaminidase.  相似文献   

3.
A lysosomal phospholipase A2, LPLA2, was recently characterized and shown to have substrate specificity for phosphatidylcholine and phosphatidylethanolamine. LPLA2 is ubiquitously expressed but is most highly expressed in alveolar macrophages. Double conditional gene targeting was employed to elucidate the function of LPLA2. LPLA2-deficient mice (Lpla2-/-) were generated by the systemic deletion of exon 5 of the Lpla2 gene, which encodes the lipase motif essential for the phospholipase A2 activity. The survival of the Lpla2-/- mice was normal. Lpla2-/- mouse mating pairs yielded normal litter sizes, indicating that the gene deficiency did not impair fertility or fecundity. Alveolar macrophages from wild-type but not Lpla2-/- mice readily degraded radiolabeled phosphatidylcholine. A marked accumulation of phospholipids, in particular phosphatidylethanolamine and phosphatidylcholine, was found in the alveolar macrophages, the peritoneal macrophages, and the spleens of Lpla2-/- mice. By 1 year of age, Lpla2-/- mice demonstrated marked splenomegaly and increased lung surfactant phospholipid levels. Ultrastructural examination of Lpla2-/- mouse alveolar and peritoneal macrophages revealed the appearance of foam cells with lamellar inclusion bodies, a hallmark of cellular phospholipidosis. Thus, a deficiency of lysosomal phospholipase A2 results in foam cell formation, surfactant lipid accumulation, splenomegaly, and phospholipidosis in mice.  相似文献   

4.
Calcium-independent phospholipase A2 in rat tissue cytosols   总被引:3,自引:0,他引:3  
Cytosols (105,000 X g supernatant) from seven rat tissues were assayed for Ca2+-independent phospholipase A2 activity with either 1-acyl-2-[1-14C]linoleoyl-sn-glycero-3-phosphocholine, 1-acyl-2-[1-14C]linoleoyl-sn-glycero-3-phosphoethanolamine or 1-O-hexadecyl-2-[9,10-3H2]oleoyl-sn-glycero-3-phosphocholine as substrate. Low but consistent activities ranging from 10-120 pmol/min per mg protein were found in all tissues. The highest activities were present in liver, lung and brain. Total activities in mU/g wet weight were rather constant, ranging from 0.43 (heart) to 1.36 (liver). The soluble enzyme from rat lung cytosol was further investigated and was found to be capable of hydrolyzing microsomal membrane-associated substrates without exhibiting much selectivity for phosphatidylcholine species. Comparative gel filtration experiments of cytosol prepared from non-perfused and perfused lungs indicated that part of the Ca2+-independent phospholipase A2 originated from blood cells, but most of it was derived from lung cells. Lung cytosol also contained Ca2+-dependent phospholipase A2 activity, a small part of which originated from blood cells, presumably platelets. The major amount of Ca2+-dependent phospholipase A2 activity, however, came from lung cells. Neither this enzyme nor the Ca2+-independent phospholipase A2 from lung tissue showed immunological cross-reactivity with monoclonal antibodies against Ca2+-dependent phospholipase A2 isolated from rat liver mitochondria.  相似文献   

5.
6.
7.
Lung surfactant is the surface-active agent comprised of phospholipids and proteins that lines pulmonary alveoli. Surfactant stabilizes the alveolar volume by reducing surface tension. Previously, we identified a lysosomal phospholipase A2, termed LPLA2, with specificity toward phosphatidylcholine and phosphatidylethanolamine. The phospholipase is localized to lysosomes, is calcium-independent, has an acidic pH optimum, and transacylates ceramide. Here, we demonstrate that LPLA2 is selectively expressed in alveolar macrophages but not in peritoneal macrophages, peripheral blood monocytes, or other tissues. Other macrophage-associated phospholipase A2s do not show a comparable distribution. LPLA2 is of high specific activity and recognizes disaturated phosphatidylcholine as a substrate. The lysosomal phospholipase A2 activity is six times lower in alveolar macrophages from mice with a targeted deletion of the granulocyte macrophage colony-stimulating factor (GM-CSF), a model of impaired surfactant catabolism, compared with those from wild-type mice. However, LPLA2 activity and protein levels are measured in GM-CSF null mice in which GM-CSF is expressed as a transgene under the control of the surfactant protein C promoter. Thus LPLA2 may be a major enzyme of pulmonary surfactant phospholipid degradation by alveolar macrophages and may be deficient in disorders of surfactant metabolism.  相似文献   

8.
9.
10.
Rat spleen supernatant contained two forms of calcium-dependent cellular phospholipase A2 which could be separated from each other by TEAE-cellulose chromatography. The phospholipase A2, named PLA2 S-1, present in the major flow-through fraction was purified to homogeneity. The structural and catalytic properties of splenic PLA2 S-1 were systematically compared with those of rat pancreatic phospholipase A2. Structural evidence, including the sequence of the N-terminal 32 residues, peptide maps obtained on Achromobacter protease I digestion and cyanogen bromide cleavage, and the amino acid composition, showed the close similarity of the two enzymes. Their catalytic and immunochemical properties were also similar. These results demonstrated the existence of a pancreatic type phospholipase A2 in a non-pancreatic organ as a member of the cellular phospholipases A2 and suggest the potential functional involvement of pancreatic type phospholipase A2 in cellular phospholipid metabolism.  相似文献   

11.
12.
13.
14.
The infection of HeLa cells by poliovirus leads to profound alterations in the activities of both phospholipase C and the A23187-stimulated phospholipase A2. As early as the third hour after poliovirus infection, the activity of phospholipase C is enhanced, as measured by the increase in inositol triphosphate (IP3) in the cells. By the fifth hour post-infection there is a 5-fold increase in IP3 in the infected cells. Therefore, the synthesis of the bulk of poliovirus proteins and poliovirus genomes takes place in cells containing a high and sustained increase in IP3. This augmentation in IP3 is dependent on the multiplicity of infection used. Poliovirus gene expression is required to induce the increase in phospholipase C activity, since the presence of cycloheximide or guanidine blocked it. In contrast to the activation of phospholipase C induced by poliovirus, there is a drastic blockade of the A23187-induced phospholipase A2 activity, measured as the release of [3H]arachidonic acid to the medium. This action on phospholipase A2 is dependent on poliovirus gene expression because it was prevented by cycloheximide or 3-methylquercetin. To our knowledge this is the first report analyzing these two activities in animal virus-infected cells. The findings described may help to explain the profound modifications of both membrane permeability and lipid metabolism undergone by poliovirus-infected cells.  相似文献   

15.
16.
Three phospholipase A2 activities from canine vascular smooth muscle were identified and characterized including: (1) a cytosolic calcium-independent phospholipase A2 which is activated by nucleotide di- and triphosphates; (2) a cytosolic calcium-dependent phospholipase A2 which is activated by physiologic increments in calcium ion concentration; and (3) a microsomal calcium-independent phospholipase A2 which was highly selective for plasmenylcholine substrate. Vascular smooth muscle cytosolic calcium-independent phospholipase A2 was activated 338% +/- 11 (X+S.E.; n = 15) by physiologic concentrations of ATP. Similar amounts of activation were also present utilizing other nucleotide di- and triphosphates (e.g., ADP, CTP, GDP and GTP) as well as non-hydrolyzable nucleotide triphosphate analogs (e.g., ATP-gamma-S, AMP-PNP and GTP-gamma-S). Vascular smooth muscle cytosolic calcium-dependent phospholipase A2 was purified 455-fold by sequential DEAE-Sephacel, Phenyl-Sepharose, Mono Q, hydroxyapatite and Superose 12 chromatographies. The partially purified calcium-dependent phospholipase A2 was activated by physiologic increments in calcium ion concentration (e.g., 1 microM) and possessed an apparent native molecular weight of 95 kDa, an acidic isoelectric point (pI = 4.8) and a neutral pH optimum (pH 7.0). Vascular smooth muscle microsomal phospholipase A2 activity was predominantly calcium-independent and was over six-fold selective for hydrolysis of plasmenylcholine substrate. Taken together, these results demonstrate the existence of three separate and distinct phospholipase A2 activities in vascular smooth muscle and identify ATP and calcium ion as independent modulators of discrete phospholipase A2 activities in vascular smooth muscle cells.  相似文献   

17.
18.
19.
The alkaline phospholipase A1 of rat liver cytosol.   总被引:1,自引:2,他引:1       下载免费PDF全文
1. Rat liver cytosol contains a heat-sensitive phospholipase A1 active against phosphatidylethanolamine, 1-acylglycerophosphoethanolamine and, to a very much lesser extent, phosphatidylcholine and phosphatidylinositol. 2. Activity towards a pure phosphatidylethanolamine substrate is invoked by the presence of water-soluble cations that do not precipitate at the pH optimum of the enzyme (9.5). In this activation bivalent cations, e.g. Mg2+, Ca2+, Mn2+, Sr2+ and Ba2+, are effective at much lower concentrations (2.5-5 mM) than univalent cations K+, Na+ and NH4+ (100 mM). 3. In the absence of such cations the enzyme can be activated by cationic amphiphiles containing quaternary nitrogen or by basic proteins. 4. It is concluded that these agents activate the enzyme by reducing the negative zeta potential on the substrate at the high pH optimum (9.5) and allow interaction with the enzyme whose isoelectric point is at 7.15. 5. The activated enzyme is markedly inhibited by mixing the phosphatidylethanolamine substrate with many other phospholipids that exist in cell membranes, e.g. phosphatidylcholine, phosphatidylinositol. On the other hand, both phosphatidylcholine and phosphatidylinositol can be hydrolysed much more readily if they are mixed with an excess of phosphatidylethanolamine. 6. Such results on the inhibition and substrate specificity of the enzyme, coupled with birefringence measurements, allow the tentative conclusion that phospholipid substrates are only attacked when they exist in a hexagonal or non-bilayer structure and not in the bilayer (lamellar) form.  相似文献   

20.
Lysosomal beta-galactosidases of rat kidney   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号