首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescent protein Dronpa undergoes reversible photoswitching reactions between the bright “on” and dark “off” states via photoisomerization and proton transfer reactions. We report the room temperature crystal structure of the fast switching Met159Thr mutant of Dronpa at 2.0‐Å resolution in the bright on state. Structural differences with the wild type include shifted backbone positions of strand β8 containing Thr159 as well as an altered A‐C dimer interface involving strands β7, β8, β10, and β11. The Met159Thr mutation increases the cavity volume for the p‐hydroxybenzylidene‐imidazolinone chromophore as a result of both the side chain difference and the backbone positional differences. Proteins 2015; 83:397–402. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
3.
The green fluorescent protein (GFP), its variants, and the closely related GFP-like proteins possess a wide variety of spectral properties that are of widespread interest as biological tools. One desirable spectral property, termed photoswitching, involves the light-induced alteration of the optical properties of certain GFP members. Although the structural basis of both reversible and irreversible photoswitching events have begun to be unraveled, the mechanisms resulting in reversible photoswitching are less clear. A novel GFP-like protein, Dronpa, was identified to have remarkable light-induced photoswitching properties, maintaining an almost perfect reversible photochromic behavior with a high fluorescence to dark state ratio. We have crystallized and subsequently determined to 1.7 A resolution the crystal structure of the fluorescent state of Dronpa. The chromophore was observed to be in its anionic form, adopting a cis co-planar conformation. Comparative structural analysis of non-photoactivatable and photoactivatable GFPs, together with site-directed mutagenesis of a position (Cys62) within the Dronpa chromophore, has provided a basis for understanding Dronpa photoactivation. Specifically, we propose a model of reversible photoactivation whereby irradiation with light leads to subtle conformational changes within and around the environment of the chromophore that promotes proton transfer along an intricate polar network.  相似文献   

4.
The spike (S) glycoprotein of coronaviruses mediates viral entry into host cells. It is a type 1 viral fusion protein that characteristically contains two heptad repeat regions, denoted HR-N and HR-C, that form coiled-coil structures within the ectodomain of the protein. Previous studies have shown that the two heptad repeat regions can undergo a conformational change from their native state to a 6-helix bundle (trimer of dimers), which mediates fusion of viral and host cell membranes. Here we describe the biophysical analysis of the two predicted heptad repeat regions within the severe acute respiratory syndrome coronavirus S protein. Our results show that in isolation the HR-N region forms a stable alpha-helical coiled coil that associates in a tetrameric state. The HR-C region in isolation formed a weakly stable trimeric coiled coil. When mixed together, the two peptide regions (HR-N and HR-C) associated to form a very stable alpha-helical 6-stranded structure (trimer of heterodimers). Systematic peptide mapping showed that the site of interaction between the HR-N and HR-C regions is between residues 916-950 of HR-N and residues 1151-1185 of HR-C. Additionally, interchain disulfide bridge experiments showed that the relative orientation of the HR-N and HR-C helices in the complex was antiparallel. Overall, the structure of the hetero-stranded complex is consistent with the structures observed for other type 1 viral fusion proteins in their fusion-competent state.  相似文献   

5.
Superresolution microscopy determines the localization of fluorescent proteins with high precision, beyond the diffraction limit of light. Superresolution microscopic techniques include photoactivated localization microscopy (PALM), which can localize a single protein by the stochastic activation of its fluorescence. In the determination of single-molecule localization by PALM, the number of molecules that can be analyzed per image is limited. Thus, many images are required to reconstruct the localization of numerous molecules in the cell. However, most fluorescent proteins lose their fluorescence upon fixation. Here, we combined the amino acid substitutions of two Eos protein derivatives, Skylan-S and mEos4b, which are a green reversibly photoswitchable fluorescent protein (RSFP) and a fixation-resistant green-to-red photoconvertible fluorescent protein, respectively, resulting in the fixation-resistant Skylan-S (frSkylan-S), a green RSFP. The frSkylan-S protein is inactivated by excitation light and reactivated by irradiation with violet light, and retained more fluorescence after aldehyde fixation than Skylan-S. The qualities of the frSkylan-S fusion proteins were sufficiently high in PALM observations, as examined using α-tubulin and clathrin light chain. Furthermore, frSkylan-S can be combined with antibody staining for multicolor imaging. Therefore, frSkylan-S is a green fluorescent protein suitable for PALM imaging under aldehyde-fixation conditions.  相似文献   

6.
7.
The corona-like spikes or peplomers on the surface of the virion under electronic microscope are the most striking features of coronaviruses. The S (spike) protein is the largest structural protein, with 1,255 amino acids, in the viral genome. Its structure can be divided into three regions: a long N-terminal region in the exterior, a characteristic transmembrane (TM) region, and a short C-terminus in the interior of a virion. We detected fifteen substitutions of nucleotides by comparisons with the seventeen published SARS-CoV genome sequences, eight (53.3%) of which are non-synonymous mutations leading to amino acid alternations with predicted physiochemical changes. The possible antigenic determinants of the S protein are predicted, and the result is confirmed by ELISA (enzyme-linked immunosorbent assay) with synthesized peptides. Another profound finding is that three disulfide bonds are defined at the C-terminus with the N-terminus of the E (envelope) protein, based on the typical sequence and posit  相似文献   

8.
乙肝病毒S蛋白是病毒的包膜蛋白,与病毒进入细胞有关,它存在逆转录过程并且具有极强的潜伏性。本论文应用生物信息学分析乙肝病毒S蛋白的序列特征,利用在线分析软件预测乙肝病毒S蛋白的理化性质和亲疏水性、跨膜区域、信号肽特征、磷酸化位点、二级结构以及乙肝病毒S蛋白的最佳抗原表位形成位置等。结果显示了乙肝病毒S蛋白由226个氨基酸组成,理论等电点是8.21,为不稳定蛋白,总平均亲水性为0.649,是疏水蛋白质,并且该蛋白存在信号肽,有4个跨膜区,有30个潜在的磷酸化位点,主要二级结构为α螺旋和无规则卷曲,同时,结合乙型肝炎病毒S蛋白的序列可及性、线性表位、β转角、柔性、抗原性的预测结果,可以找到潜在的抗原表位区域,为乙型肝炎的表位疫苗研制提供重要的参考依据,有利于进一步对乙型肝炎S蛋白的抗原性进行研究。  相似文献   

9.
10.
11.
Ribosomal protein (rp) S5 belongs to a family of ribosomal proteins that includes bacterial rpS7. rpS5 forms part of the exit (E) site on the 40S ribosomal subunit and is essential for yeast viability. Human rpS5 is 67% identical and 79% similar to Saccharomyces cerevisiae rpS5 but lacks a negatively charged (pI approximately 3.27) 21 amino acid long N-terminal extension that is present in fungi. Here we report that replacement of yeast rpS5 with its human homolog yielded a viable yeast strain with a 20%-25% decrease in growth rate. This replacement also resulted in a moderate increase in the heavy polyribosomal components in the mutant strain, suggesting either translation elongation or termination defects, and in a reduction in the polyribosomal association of the elongation factors eEF3 and eEF1A. In addition, the mutant strain was characterized by moderate increases in +1 and -1 programmed frameshifting and hyperaccurate recognition of the UAA stop codon. The activities of the cricket paralysis virus (CrPV) IRES and two mammalian cellular IRESs (CAT-1 and SNAT-2) were also increased in the mutant strain. Consistently, the rpS5 replacement led to enhanced direct interaction between the CrPV IRES and the mutant yeast ribosomes. Taken together, these data indicate that rpS5 plays an important role in maintaining the accuracy of translation in eukaryotes and suggest that the negatively charged N-terminal extension of yeast rpS5 might affect the ribosomal recruitment of specific mRNAs.  相似文献   

12.
The red fluorescent protein KillerRed, engineered from the hydrozoan chromoprotein anm2CP, has been reported to induce strong cytotoxicity through the chromophore assisted light inactivation (CALI) effect. Here, we present the X-ray structures of KillerRed in its native and bleached states. A long water-filled channel is revealed, connecting the methylene bridge of the chromophore to the solvent. This channel facilitates the transit of oxygen and of reactive oxygen species (ROS) formed by reaction with the excited chromophore. The functional roles of key mutations used to produce KillerRed are discussed, strong chromophore distortions in the bleached state are revealed, and mechanisms for ROS production and self protection are proposed. The presence of a partially mature, photo-resistant, green-emitting state is characterized, which accounts for enhanced CALI by “pre-bleached” KillerRed.  相似文献   

13.
Monomeric Kusabira Orange (mKO) is a green fluorescent protein (GFP)-like protein that emits orange light at a peak of 559 nm. We analyzed its X-ray structure at 1.65 A and found a novel three-ring chromophore that developed autocatalytically from a Cys65-Tyr66-Glu67 tripeptide in which the side chain of Cys65 formed the third 2-hydroxy-3-thiazoline ring. As a result, the chromophore contained the CNCOH group at the 2-position of the imidazolinone moiety such that the conjugated pi-electron system of the chromophore was more extended than that of GFP but less extended than that of the Discosoma sp. red fluorescent protein (DsRed). Since a sulfur atom has potent nucleophilic character, the third 3-thiazoline ring is rapidly and completely cyclized. Furthermore, our structure reveals the presence of a pi-pi stacking interaction between His197 and the chromophore as well as a pi-cation interaction between Arg69 and the chromophore. These structural findings are sufficient to account for the orange emission, pH tolerance, and photostability of mKO.  相似文献   

14.
Amarantin acidic subunit has the potential to be employed as a functional and a nutraceutical protein. To evaluate both possibilities this protein was produced in recombinant Escherichia coli Origami (DE3) harboring the expression plasmid pET-AC6His. Three different expression factors were assayed: inductor concentration, temperature and time of the amarantin acidic subunit accumulation. The results indicated that a 0.3 mmol/L concentration of isopropyl-beta-D-thiogalactoside, at 37 degrees C and 6 h after induction were favorable for high expression of amarantin acidic subunit, mostly in the form of inclusion bodies. The protein was purified from soluble fraction by immobilized metal affinity chromatography, up to 30 mg amarantin acidic subunit/L Terrific broth culture were obtained. Sucrose density gradient ultracentrifugation analysis of the expressed soluble amarantin acidic subunit revealed that it was assembled in monomers. The expression of the amarantin acidic subunit, together with the one-step purification will facilitate further investigation of this storage protein through site-directed mutagenesis.  相似文献   

15.
A new fluorescence formed while microtubule-associated protein tau was incubated at 25 and 37C for hours, with its maximum excitation at 230 and 280 nm, respectively. The fluorescence completely formed after tau was incubated in phosphate buffer and Tris-HCl buffer for approximately 20 h, with a relaxation phase about 2-4 h. The light scattering of the sample solution improved during formation of the fluorescence when tau was incubated. Both the fluorescence and tau oligomers did not form when tau was incubated in the buffers containing DTT. On the other hand, heparin improved both tau aggregation and the fluorescence formation. It suggests that the fluorescence comes from tau polymerization, which may follow the mechanism of tyrosine-tyrosinate emission for a protein not containing any tryptophan residues. This new fluorescence could be used as a probe to tau polymers.  相似文献   

16.
Fluorescent proteins derived from light, oxygen, or voltage (LOV) domains offer advantages over green fluorescent protein (GFP) from their small size and efficacy under anaerobic conditions. The flavoprotein improved LOV (iLOV) was engineered from the blue light receptor phototropin as a reporter of viral infection. To inform the molecular basis for the improved, photoreversible, fluorescent properties of iLOV, we employed directed evolution and determined five LOV crystallographic structures. Comparative structural analyses between iLOV and its progenitors reveal mutation-induced constraints in the environment of the flavin mononucleotide (FMN) chromophore; in iLOV, the methyl group of Thr-394 "crowds" the FMN isoalloxazine ring, Leu-470 triggers side chain "flipping" of Leu-472, and the terminal FMN phosphate shows increased anchoring. We further engineered iLOV variants that are readily detectable in bacterial and mammalian cells due to order-of-magnitude photostability increases. Structure determination of a resulting representative photostable iLOV (phiLOV) variant reveals additional constraints on the chromophore. Aromatic residues Tyr-401 and Phe-485 in phiLOV sandwich the FMN isoalloxazine ring from both sides, whereas Ser-390 anchors the side chain of FMN-interacting Gln-489 Our combined structural and mutational results reveal that constraining the FMN fluorophore yields improved photochemical properties for iLOV and its new photostable derivative. These findings provide a framework for structural fine-tuning of LOV scaffold proteins to maximize their potential as oxygen-independent fluorescent reporters.  相似文献   

17.
Ribosomal protein S6 is phosphorylated in response to mitogens by activation of one or more protein kinase cascades. Phosphorylation of S6 in vivo is catalyzed by (at least) two distinct mitogen-activated S6 kinase families distinguishable by size, the 70 kDa and 90 kDa S6 kinases. Both S6 kinases are activated by serine/threonine phosphorylation. Members of each family have been cloned. The 90 kDa S6 kinases are activated more rapidly than the 80 kDa S6 kinase, and may have other intracellular targets. The 70 kDa S6 kinase is relatively specific for 40 S ribosomal subunits. No kinase capable of activating the 70 kDa S6 kinase has been identified. Members of the 90 kDa S6 kinases are activated in vitro by 42 kDa and 44 kDa MAP kinases, which are in turn activated by mitogen-dependent activators. The pathways for mitogen-stimulated S6 phosphorylation are discussed.  相似文献   

18.
The signals generated by the IFNgamma receptor to initiate mRNA translation and generation of protein products that mediate IFNgamma responses are largely unknown. In the present study, we provide evidence for the existence of an IFNgamma-dependent signaling cascade activated downstream of the phosphatidylinositol (PI) 3'-kinase, involving the mammalian target of rapamycin (mTOR) and the p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated and activated during engagement of the IFNgamma receptor in sensitive cell lines. Such activation of p70 S6 kinase is blocked by pharmacological inhibitors of the PI 3' kinase and mTOR, and is abrogated in double-knockout mouse embryonic fibroblasts for the alpha and beta isoforms of the p85 regulatory subunit of the PI 3'-kinase. The IFNgamma-activated p70 S6 kinase subsequently phosphorylates the 40S S6 ribosomal protein on serines 235/236, to regulate IFNgamma-dependent mRNA translation. In addition to phosphorylation of 40S ribosomal protein, IFNgamma also induces phosphorylation of the 4E-BP1 repressor of mRNA translation on threonines 37/46, threonine 70, and serine 65, sites whose phosphorylation is required for the inactivation of 4E-BP1 and its dissociation from the eukaryotic initiation factor-4E (eIF4E) complex. Thus, engagement of the PI 3'-kinase and mTOR by the IFNgamma receptor results in the generation of two distinct signals that play roles in the initiation of mRNA translation, suggesting an important role for this pathway in IFNgamma signaling.  相似文献   

19.
S1 domains occur in four of the major enzymes of mRNA decay in Escherichia coli: RNase E, PNPase, RNase II, and RNase G. Here, we report the structure of the S1 domain of RNase E, determined by both X-ray crystallography and NMR spectroscopy. The RNase E S1 domain adopts an OB-fold, very similar to that found with PNPase and the major cold shock proteins, in which flexible loops are appended to a well-ordered five-stranded beta-barrel core. Within the crystal lattice, the protein forms a dimer stabilized primarily by intermolecular hydrophobic packing. Consistent with this observation, light-scattering, chemical crosslinking, and NMR spectroscopic measurements confirm that the isolated RNase E S1 domain undergoes a specific monomer-dimer equilibrium in solution with a K(D) value in the millimolar range. The substitution of glycine 66 with serine dramatically destabilizes the folded structure of this domain, thereby providing an explanation for the temperature-sensitive phenotype associated with this mutation in full-length RNase E. Based on amide chemical shift perturbation mapping, the binding surface for a single-stranded DNA dodecamer (K(D)=160(+/-40)microM) was identified as a groove of positive electrostatic potential containing several exposed aromatic side-chains. This surface, which corresponds to the conserved ligand-binding cleft found in numerous OB-fold proteins, lies distal to the dimerization interface, such that two independent oligonucleotide-binding sites can exist in the dimeric form of the RNase E S1 domain. Based on these data, we propose that the S1 domain serves a dual role of dimerization to aid in the formation of the tetrameric quaternary structure of RNase E as described by Callaghan et al. in 2003 and of substrate binding to facilitate RNA hydrolysis by the adjacent catalytic domains within this multimeric enzyme.  相似文献   

20.
螯合体1(SQSTM1/p62)是一种选择性自噬接头蛋白,在清除待降解蛋白、维持细胞内蛋白质稳态中发挥重要的调控作用。p62蛋白具有多个功能结构域,介导与多种蛋白质发生相互作用进而精确调节特定的信号通路,从而将p62蛋白与氧化防御系统、炎症反应和营养感知等重要生命过程联系起来。研究表明p62的突变或者表达异常与多种疾病的发生发展过程密切相关,包括神经退行性疾病、肿瘤、感染性疾病、遗传性疾病以及慢性疾病等。本文综述了p62蛋白的结构特征、分子功能,并系统介绍其在蛋白质稳态和信号通路调控中的多种功能,总结了p62在疾病发生发展中的复杂性与多面性,以期为p62蛋白的功能与相关疾病研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号