首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An efficient micropropagation protocol was developed for the medicinal plant Phyllanthus caroliniensis (Euphorbiaceae) using nodal segments for axillary shoot proliferation. Maximum multiplication (21–23 shoots per explant) was achieved on MS or AR media supplemented with either 5.0 μM BA, 1.25–5.0 μM kinetin or 2.5–5.0 μM 2iP. Rooting was achieved with 80–100% of the microshoots on MS medium without growth regulators, although 1.25 μM NAA and 1.25–5.0 μM IAA promoted significant increases in the number of roots per explant. Regenerated plants were successfully acclimatized and about 88% of plantlets survived under ex vitro conditions. Flowering was observed on in vitro grown plantlets and after 3–4 weeks of acclimatization. High frequency callus initiation and growth was achieved when nodal segment explants were inoculated in the vertical position on MS medium supplemented with 5.0 μM 2,4-D. Root cultures were successfully established on MS medium containing 1.1 μM NAA. The optimized micropropagation, callus and root culture protocols offer the possibility to use cell/root culture techniques for vegetative propagation and secondary metabolism studies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
A simple, high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from leaf-disc cultures of Jatropha curcas L. has been developed. Adventitious shoot buds were induced from very young leaf explants of in vitro germinated seedlings as well as mature field-grown plants cultured on Murashige and Skoog’s (MS) medium supplemented with thidiazuron (TDZ) (2.27 μM), 6-benzylaminopurine (BA) (2.22 μM) and indole-3-butyric acid (IBA) (0.49 μM). The presence of TDZ in the induction medium has greater influence on the induction of adventitious shoot buds, whereas BA in the absence of TDZ promoted callus induction rather than shoot buds. Induced shoot buds were multiplied and elongated into shoots following transfer to the MS medium supplemented with BA (4.44 μM), kinetin (Kn) (2.33 μM), indole-3-acetic acid (IAA) (1.43 μM), and gibberellic acid (GA3) (0.72 μM). Well-developed shoots were rooted on MS medium supplemented with IBA (0.5 μM) after 30 days. Regenerated plants after 2 months of acclimatization were successfully transferred to the field without visible morphological variation. This protocol might find use in mass production of true-to-type plants and in production of transgenic plants through Agrobacterium/biolistic-mediated transformation.  相似文献   

3.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

4.
An efficient in vitro regeneration protocol was developed for medicinally important aromatic plant Anethum graveolens. Nodal segments were cultured onto Murashige and Skoog (MS) basal medium supplemented with different auxins and cytokinins singly as well as in combinations. The optimum callus induction (93.33 %) was obtained on medium fortified with 2.2 μM N6-benzyladenine (BA) and 0.21 μM α-naphthaleneacetic acid. The best shoot regeneration (85.7 %) with 12.86 shoots per explant was achieved in two weeks when callus was subcultured on MS medium amended with 2.2 μM BA and 1.85 μM kinetin. The average length of regenerated shoots varied from 3.15 to 4.8 cm. The rooting of regenerated shoots was nearly 100 % on ? MS augmented with 4.9 μM indolebutyric acid with a maximum root length of 5.1 cm. Plantlets were successfully acclimatized with 60 % survival rate. During organogenesis, catalase and ascorbate peroxidase activity increased while superoxid dismutase activity decreased. Clonal fidelity of in vitro raised plants has been checked by random amplified polymorphic DNA using 10 selected decamer primers. It has been found that regenerated plants are true to type plants.  相似文献   

5.
Nodular meristematic callus was induced on the basal cut surface of apical shoot explants of salvia cultured on Murashige and Skoog (MS) medium supplemented with 4.5, 13.5, or 22.5 μM thidiazuron (TDZ). Cultures were incubated in the dark for 1 wk and then transferred to light conditions for 4 wk. A higher percentage of explants developing callus was observed on medium containing either 4.5 or 13.5 μM TDZ, although explants on 4.5 μM developed larger calluses. The callus was maintained on medium containing 4.5 μM TDZ and 0.45 mM ascorbic acid. Shoot differentiation, after each of three successive maintenance passages, was induced from callus grown on medium containing either 4.4 or 8.8 μM benzyladenine (BA). A greater number of shoots were harvested from callus differentiated on BA (4.4 or 8.8 μM) medium with 0.45 mM ascorbic acid added. Shoots developed roots on MS medium supplemented with 4.9 μM of indole-3-butyric acid. The addition of ascorbic acid to the shoot differentiation medium enhanced rooting, number of roots per shoot, and survival rate. Approximately 75% in vitro plantlets were acclimatized to ex vitro conditions. Histological investigations confirmed both adventitious meristem initiation during the callus induction phase, and subsequent organogenic shoot development on the differentiation medium. The novel protocol for the meristematic callus induction and plant regeneration in this study may be useful for biotechnological applications for salvia improvement via genetic transformation or mutagenesis and in vitro propagation approaches.  相似文献   

6.
An efficient plant regeneration protocol for shoot organogenesis from Hovenia dulcis callus cultures was established. Induction of organogenic callus was achieved on Murashige and Skoog (MS) medium supplemented with 4.65 μM kinetin and 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Further differentiation of organogenic callus into primordia, shoot-like structures, and plantlets was achieved on MS medium supplemented with 0.23 μM gibberellic acid (GA3) and 0.46 μM kinetin. Numerous abnormal shoots developed upon transfer of callus to MS medium containing cytokinins, and these failed to grow further into whole plantlets. However, transfer of ‘abnormal’ shoots to a fresh MS medium lacking cytokinins resulted in growth of normal shoots. Elongated shoots subsequently were rooted in basal MS medium, and whole plantlets were established in a soil mix. Analysis of regenerated plants using random amplified polymorphic DNA (RAPD) confirmed the genetic stability of these regenerant plantlets.  相似文献   

7.
Summary A protocol has been developed for high-frequency shoot regeneration and plant establishment of Tylophora indica from petiole-derived callus. Optimal callus was developed from petiole explants on Murashige and Skoog basal medium supplemented with 10μM2,4-dichlorophenoxyacetic acid +2,5μM thidiazuron (TDZ). Adventitious shoot induction was achieved from the surface of the callus after transferring onto shoot induction medium. The highest rate (90%) of shoot multiplication was achieved on MS medium containing 2.5μM TDZ. Individual elongated shoots were rooted best on halfstrength MS medium containing 0.5μM indole-3-butyric acid (IBA). When the basal cut ends of the in vitro-regenerated shoots were dipped in 150μM IBA for 30 min followed by transplantation in plastic pots containing sterile vermiculite, a mean of 4.1 roots per shoot developed. The in vitro-raised plantlets with well-developed shoot and roots were successfully established in earthen pots containing garden soil and grown in a greenhouse with 100% survival. Four months after transfer to pots, the performance of in vitro-propagated plants of T. indica was evaluated on the basis of selected physiological parameters and compared with ex vitro plants of the same age.  相似文献   

8.
Summary A procedure has been outlined for plant regeneration of an important medicinal shrub, Holarrhena antidysenterica, through shoot segment-derived callus. Explants used for callus induction were shoot segments derived from 14-d-old axenic plants on Murashige and Skoog (MS) medium supplemented with 15 μM N6-benzyladenine (BA). A white friable type of callus was obtained in 4.52 μM 2,4-dichlorophenoxyacetic acid and 2.32 μM kinetin which did not have the potentiality to regenerate. High-frequency shoot differentiation was achieved on transferring the friable callus to MS medium supplemented with 17.8 μM BA and 8.0 μM naphthaleneacetic acid. The highest percentage of calluses forming shoots (65.06±2.26) was achieved in this medium. The organogenetic potential of the regenerating callus was influenced by the age of the culture. Rooting was achieved on the shoots using MS medium with 25 μM indolebutyric acid. The plantlets were acclimatized and established in soil. The regenerated plants were morphologically uniform and exhibited similar growth characteristics and vegetative morphology to the donor plants.  相似文献   

9.
This study describes a reliable protocol for callus induction and rapid mass propagation of the ecologically important plant, Zygophyllum xanthoxylon (Bunge) Maxim. The optimum callus induction medium was Murashige and Skoog (MS) supplemented with 4.4 μM 6-benzylaminopurine (BAP) and 2.7 μM α-naphthalene–acetic acid (NAA), on which the callus induction frequencies from different seedling explants were all 100%. However, seedling-derived callus did not form regenerated shoots. In order to achieve shoot multiplication, shoots were developed from cultured plumules, at an average of 3.1 shoots per explant, and the regenerated shoot tips were further multiplied by subculture. The best shoot multiplication from shoot tips was achieved on MS supplemented with 5.4 μM NAA and 22.2 μM BAP after 40 d of culture. Seventy-three percent of regenerated shoots formed roots when cultured on MS supplemented with 8.6 μM IAA after 4 wk of culture. The plants that acclimatized successfully in sand flourished the following year, with normal morphology and growth characteristics.  相似文献   

10.
Summary A protocol was developed for rapid clonal propagation of the important medicinal climber, Tinospora cordifolia, through in vitro culture of mature nodal explants. Shoots were initiated on both Murashige and Skoog (MS) medium and woody plant medium (WPM) supplemented with 2.32 μM kinetin (KIN). Of the two basal media tested, WPM was found to be superior to MS medium for the induction of multiple shoots. Among the cytokinins tested, N6-benzyladenine (BA) was more effective than KIN for axillary shoot proliferation. KIN was superior to BA in terms of shoot elongation. An average multiplication rate of 6.3 shoots per explant was obtained with WPM supplemented with 8.87 μM BA. Shoot clumps harvested from this medium were transferred to WPM supplemented with 2.22 μM BA and 4.65 μM KIN for shoot elongation. Elongated shoots were rooted in half-strength MS medium supplemented with 2.85 μM indole-3-acetic acid (IAA). Rooted plantlets were successfully transferred to sand and established with 80% survival.  相似文献   

11.
This report describes in vitro shoot induction and plant regeneration from mature nodal explants of Vitex trifolia L. on Murashige and Skoog (MS) medium fortified with benzylaminopurine (BAP), kinetin (KN), thidiazuron (TDZ), adenine (ADE), and 2-isopentenyladenine (2-iP) (0.25 – 10.0 μM). Multiple shoots differentiated directly without callus mediation within 3 weeks when explants were cultured on medium supplemented with cytokinins. The maximum number of shoots (9 shoots per explant) was developed on a medium supplemented with 5.0 μM BAP. Shoot cultures was established repeatedly subculturing the original nodal explant on the same medium. Rooting of shoots was achieved on half strength MS medium supplemented with 0.5 μM naphthaleneacetic acid (NAA). Rooted plantlets transferred to pots containing autoclaved soil and vermiculite mixture (1:1) showed 90 % survival when transferred to outdoor.  相似文献   

12.
In vitro morphogenesis via organogenesis was achieved from callus cultures derived from hypocotyl explants of Acacia sinuata on MS (Murashige and Skoog, 1962) medium. Calli were induced from hypocotyl explants excised from 7-day-old seedlings on MS medium containing 3% sucrose, 0.8% agar, 6.78 μM 2,4-dichlorophenoxyacetic acid and 2.22 μM 6-benzylaminopurine. Regeneration of adventitious buds from callus was achieved when they were cultured on MS medium supplemented with 10% coconut water, 13.2 μM 6-benzylaminopurine and 3.42 μM indoleacetic acid. Addition of gibberellic acid (1.73 μM) favored shoot elongation. Regenerated shoots produced prominent roots when transferred to half strength MS medium supplemented with 7.36 μM indolebutyric acid. Rooted plantlets, thus developed were hardened and successfully established in the soil. This protocol yielded an average of 20 plants per hypocotyl explant over a period of 4 months. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.  相似文献   

14.
Summary We describe an in vitro propagation protocol for Zingiber petiolatum (Holttum), I. Theilade, a rare species from the southern part of Thailand. Fruits were surface-sterilized and seeds germinated on Murashige and Skoog medium (MS) medium supplemented with 3% sucrose. Three-month-old seedlings were used as initial plant material for in vitro propagation. Terminal buds of the plants were inoculated on MS medium containing 6-benzylaminopurine (BA; 2.2–35.5 μM) alone or in combination with 1-naphthaleneacetic acid (0.5 μM). Eight weeks after inoculation, the cultures were transferred to MS medium without plant growth regulators for 4wk. The cultures transferred from MS medium with 17.8 μM BA revealed the highest shoot induction rate of 6.1±0.7 shoots per explant. Rooting was spontaneously achieved in MS medium without plant growth regulators. Rooted plants were successfully transplanted to soil.  相似文献   

15.
A reproducible in vitro regeneration system for Nepalese kutki (Picrorhiza scrophulariiflora Pennell) was developed from in vitro leaf derived callus. Induction of more than seven shoot buds per explant was achieved on Woody plant medium (WPM) supplemented with 0.53 μM α-napthaleneacetic acid (NAA) and 0.23 μM kinetin (KIN). The shoots were elongated on WPM supplemented with 0.44 μM 6-benzylaminopurine (BAP) and rooted on WPM supplemented with 5.3 μM NAA within 2 weeks. The random amplified polymorphic DNA (RAPD) analysis indicated genetic uniformity of the micropropagated plants with its donor plants.  相似文献   

16.
Summary Efficient shoot regeneration of sugarcane (Saccharum spp. hybrid cv. CP84-1198) from embryogenic callus cultures has been obtained using thidiazuron (TDZ). Callus was placed on modified Murashige and Skoog (MS) medium containing 2.3 μM 2,4-dichlorophenoxyacetic acid (2,4-D), or 9.3 μM kinetin and 22.3 μM naphthaleneacetic acid (NAA) and compared with the same MS medium supplemented with 0.5, 1.0, 2.5, 5.0 or 10.0 μMTDZ, A11 TDZ treatments resulted in faster shoot regeneration than the kinetin/NAA treatment, and more shoot production than either the 2,4-D or kinetin/NAA treatments. Maximum response, as determined by total number of shoots (26 per explant) and number of shoots greater than 1 cm (4 per explant) 4 wk after initiation, was obtained with 1.0 μM TDZ. The shoots rooted efficiently on MS medium supplemented with 19.7 μM indole-3-butyric acid (IBA). These results indicate that TDZ effectively stimulates sugarcane plant regeneration from embryogenic callus, and may be suitable to use in genetic transformation studies to enhance regeneration of transgenic plants.  相似文献   

17.
Summary A protocol for in vitro propagation using direct induction of shoot buds from leaf explants of in vitro-raised shoots of Rosa damascena var. Jwala is reported. The present study is the first report on direct shoot regeneration in scented roses. Elite plants raised from nodal explants and maintained for over 2yr in vitro on a static liquid shoot multiplication Murashige and Skoog (MS) medium supplemented with 5.0 μM benzyladenine (BA) and 3% sucrose were used. Petioles from fully developed young leaves, obtained after 4 wk of pruning of old shoots, were found to be ideal for regeneration of shoots. Initially the explants were cultured in an induction medium [half-strength MS+3% sucrose+6.8μM thidiazuron+0.27 μM α-naphthaleneacetic acid (NAA)+17.7 μM AgNO3] and subsequently transferred to the regeneration medium (MS+2.25 μM BA+0.054 μM NAA) after 7, 14, 21, 28, and 35d. The highest shoot regeneration response (69%) was recorded when shoots were kept in the induction medium for 21 d and later transferred to regeneration medium. Histological studies revealed direct formation of shoot buds without the intervening callus phase. In vitro rooting of micro-shoots was accomplished within 2wk on half-strength MS liquid medium supplemented with 10.0 μM IBA and 3% sucrose for 1 wk in the dark and later transferred to hormone-free medium and kept in the light. Plantlets, remaining in the latter medium for 5–6 wk when transferred to soil, showed 90% survival.  相似文献   

18.
Micropropagation of Centella asiatica (L.), a valuable medicinal herb   总被引:1,自引:0,他引:1  
A protocol is described for rapid and large-scale in vitro clonal propagation of the valuable medicinal herb Centella asiatica (L.) by enhanced axillary bud proliferation in nodal segments isolated from mature plants. Although bud break was dependent on BA supply, the synergistic combination of 22.2 μM BA and 2.68 μM NAA induced the optimum frequency (91%) of shoot formation as well as shoot number (4 to 5 shoots per node). Subculturing of nodal segments harvested from the in vitro derived axenic shoots on the multiplication medium enabled continuous production of healthy shoots with similar frequency. MS medium supplemented with 6.7 μM BA and 2.88 μM IAA was found most suitable for shoot elongation. Rooting was highest (90%) on full-strength MS medium containing 2.46 μM IBA. Micropropagated plants established in garden soil were uniform and identical to the donor plant with respect to growth characteristics. This micropropagation procedure could be useful for raising a stock of genetically homogenous plant material for field cultivation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
An efficient micropropagation protocol based on multiple shoot induction and callus regeneration has been standardized in Sarcostemma brevistigma, a rare medicinal plant. The nodal cuttings were cultured on MS medium supplemented with BA (0.5–8 μM) or Kn (0.5–8 μM) alone or in combination with NAA (0.5–1.5 μM). Maximum multiple shoot induction was observed on MS medium supplemented with 4 μM BA. On this medium, 100% cultures responded with an average number of 11.3 shoots per explant. However, the average shoot length was limited to only 0.9 cm on this medium. The addition of 1 μM NAA along with 4 μM BA gave rise to an average number of 10.9 shoots with an average shoot length of 1.8 cm. Luxuriantly growing callus was obtained on MS medium supplemented with BA (5 μM) and 2,4-D (2 μM). The callus was subcultured on MS medium supplemented with BA (2–15 μM) or Kn (2–15 μM) alone or in combination with NAA (0.5–2 μM) for shoot organogenesis. Optimum callus regeneration was obtained on MS medium supplemented with 10 μM BA and 1 μM NAA. On this medium, 100% cultures responded with an average number of 13.4 shoots per culture. The shoots obtained via multiple shoot induction and organogenesis were rooted on half-strength MS medium supplemented with NAA (1–7 μM) or IBA (1–7 μM). IBA was better than NAA in terms of both the percentage of cultures that responded and the average number of roots per explant. The rooted shoots were successfully transplanted to soil with 86% success. This standardized protocol will help to conserve this rare medicinal plant.  相似文献   

20.
An in vitro propagation protocol has been developed from mature trees of Pittosporum napaulensis. The best bud proliferation (83.1%), shoot number (21 axillary shoots/ explant) and shoot length (5.5 cm) was achieved in Murashige and Skoog (MS) medium supplemented with 5.0 μM N−6 benzyladenine and 0.1 μM α- naphthalene acetic acid. Of the three cytokinins tested (N−6 benzyladenine, kinetin and thidiazuron), N−6 benzyladenine proved to be the best for shoot induction. Shoot regeneration potential varied among genotypes. Regenerated shoots rooted after 48 hours treatment on half-strength MS liquid medium supplemented with 20 μM indole-3-butyric acid. Rooted shoots transferred to 120 g (w/v) soilrite + sand + soil (1:1:1) mixture showed 70% survival. Twenty-one plantlets are growing well in green house conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号