首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IS1203v is an insertion sequence which has been found in inactivated Shiga toxin 2 genes of Escherichia coli O157:H7. We analyzed the transpositional mechanism of IS1203v in order to investigate whether the Shiga toxin 2 genes inactivated by IS1203v could revert to the wild type. When the transposase activity of IS1203v was enhanced by artificial frameshifting, IS1203v was obviously excised from the Shiga toxin 2 gene in a circular form. The IS1203v circle consisted of the entire IS1203v, but an extra 3-bp sequence (ATC) intervened between the 5' and 3' ends of IS1203v. The extra 3-bp sequence was identical to a direct repeat which was probably generated upon insertion. Moreover, we detected the Shiga toxin 2 gene with a precise excision of IS1203v. In the wild-type situation, the transposition products of IS1203v could be observed by PCR amplification. These results show that IS1203v can transpose in a nonreplicative manner and that the Shiga toxin gene inactivated by this insertion sequence can revert to the wild type.  相似文献   

2.
AIMS: To investigate the prevalence and characteristics of Shiga toxin-producing Escherichia coli (STEC) in cattle from Paraná State, southern Brazil. METHODS AND RESULTS: One hundred and seven faeces cattle samples were cultured on Sorbitol-MacConkey agar. Escherichia coli colonies were tested for production of Shiga toxin using Vero-cell assay. A high prevalence (57%) of STEC was found. Sixty-four STEC were serotyped and examined for the presence of stx(1), stx(2), eae, ehxA and saa genes and stx(2) variants. The isolates belonged to 31 different serotypes, of which three (O152:H8, O175:H21 and O176:H18) had not previously been associated with STEC. A high prevalence of stx(2)-type genes was found (62 strains, 97%). Variant forms found were stx(2), stx(2c), stx(2vhb), stx(2vO111v/OX393) and a form nonclassifiable by PCR-RFLP. The commonest genotypes were stx(2)ehxA saa and stx(1)stx(2)ehxA saa. CONCLUSIONS: A high frequency of STEC was observed. Several strains belong to serotypes previously associated with human disease and carry stx(2) and other virulence factors, thus potentially representing a risk to human health. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study of STEC in Paraná State, and its findings emphasize the need for proper cattle handling to prevent human contamination.  相似文献   

3.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

4.
AIMS: To determine the subtypes of stx and eae genes of Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from calves and to ascertain the typical and atypical nature of EPEC. METHODS AND RESULTS: One hundred and eighty-seven faecal samples from 134 diarrhoeic and 53 healthy calves were investigated for the presence of stx, eae and ehxA virulence genes by polymerase chain reaction and enzyme-linked immunosorbent assay. Subtype analysis of stx(1) exhibited stx(1c) in 13 (31.70%) isolates, while that of stx(2) revealed stx(2c) in eight (24.24%) and stx(2d) in two (6.06%) isolates. Subtyping of eae gene showed the presence of eae-beta, eae-eta and eae-zeta in two, three and four isolates respectively. None of the E. coli isolates possessed stx(2e), stx(2f), eae-alpha, eae-delta, eae-epsilon and eae-xi. All EPEC isolates were atypical. CONCLUSIONS: stx(1), stx(1c), stx(2), stx(2c), stx(2d), eae-beta, eae-eta and eae-zeta subtypes are prevalent in STEC and EPEC isolates in India. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first subtype analysis of stx(2) and eae genes of animal E. coli isolates in India and emphasizes the need to investigate their transmission to humans.  相似文献   

5.
Antibody to Escherichia coli O157 lipopolysaccharide was detected in the sera of healthy individuals more frequently in Southern Thailand than in Japan. The result suggested possible exposure of Thai people to E. coli O157. E. coli O157:H7 or O157:H(-) was isolated from four of 95 retail beef and one of 55 bovine feces samples collected in Southern Thailand by enrichment culture followed by immunomagnetic bead separation. Four of the five strains carried the stx(2) gene alone or in combination with the stx(1) gene. The strains were shown to be genetically distinct by an arbitrarily primed PCR method.  相似文献   

6.
We have investigated the Shiga toxin genes of Shiga toxin-producing Escherichia coli (STEC) strains, using polymerase chain reaction (PCR) amplifying the full lengths of these genes. As a result, we found the Shiga toxin 2 gene which was insertionally inactivated by an insertion sequence (IS). This IS element was identical to IS1203v which has been also found in inactivated Shiga toxin 2 genes, and was inserted at the same site as in the previous paper. On the other hand, both Shiga toxin 2 genes were different (98.3% identity). These suggested that IS1203v independently inserted into each Shiga toxin 2 genes, and STEC strains possessing the insertionally inactivated Shiga toxin genes are most likely to have a wide distribution. Amplification of the full length of the Shiga toxin gene is one of the effective methods to detect the gene no matter where the IS element is included, i.e., the insertion can be reflected in the size of amplicon.  相似文献   

7.
A total of 107 Shiga toxin-producing Escherichia coli strains (STEC) isolated from different origins in S?o Paulo, Brazil, and belonging to different serotypes were characterized regarding stx subtypes and susceptibility to antimicrobial agents. Most of the human STEC strains harbored stx1 (85.7%), while stx2, associated or not to stx1, was identified preferentially in the animal and food strains. None of the STEC strains carried stx1c. Some genotypes occurred exclusively among strains of bovine origin as stx2c, stx1+2+2c (16.5% each), and stx2d (0.9%), whereas stx2+2c2vha) was only identified among the O157:H7 human strains. Moreover, the stx(2c2vhb) subtype was found more frequently among bovine than human strains (39% vs. 4.8%). The highest frequencies of susceptibility to antimicrobial agents were observed among bovine (87%) and food (100%) STEC strains, while 47.6% of the human isolates were resistant to at least one drug. Multiresistance occurred among O111 STEC strains from human and bovine origin. The antimicrobials to which resistance was most frequently observed were tetracycline (90%) and streptomycin (75%) among human strains, and also sulphazotrin (88%) in animal strains. A few serotypes were commonly identified among STEC strains isolated from diverse sources in Brazil, but in general the strains presented distinct stx subtypes and/or antimicrobial resistance profiles.  相似文献   

8.
9.
The enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain RIMD 0509952, derived from an outbreak in Sakai city, Japan, in 1996, produces two kinds of verotoxins, VT1 and VT2, encoded by the stx1 and stx2 genes. In the EHEC strains, as well as in other VT-producing E. coli strains, the toxins are encoded by lysogenic bacteriophages. The EHEC O157:H7 strain RIMD 0509952 did not produce plaque-forming phage particles upon inducing treatments. We have determined the complete nucleotide sequence of a prophage, VT2-Sakai, carrying the stx2A and stx2B genes on the chromosome, and presumed the putative functions of the encoded proteins and the cis-acting DNA elements based on sequence homology data. To our surprise, the sequences in the regions of VT2-Sakai corresponding to the early gene regulators and replication proteins, and the DNA sequences recognized by the regulators share very limited homology to those of the VT2-encoding 933W phage carried by the EHEC O157:H7 strain EDL933 reported by Plunkett et al. (J. Bacteriol., p1767-1778, 181, 1999), although the sequences corresponding to the structural components are almost identical. These data suggest that these two phages were derived from a common ancestral phage and that either or both of them underwent multiple genetic rearrangements. An IS629 insertion was found downstream of the stx2B gene and upstream of the lysis gene S, and this might be responsible for the absence of plaque-forming activity in the lysate obtained after inducing treatments.  相似文献   

10.
Probiotics are known to have an inhibitory effect against the growth of various foodborne pathogens, however, the specific role of probiotics in Shiga-toxin-producing Escherichia coli (STEC) virulence gene expression has not been well defined. Shiga toxins are members of a family of highly potent bacterial toxins and are the main virulence marker for STEC. Shiga toxins inhibit protein synthesis in eukaryotic cells and play a role in hemorrhagic colitis and hemolytic uremic syndrome. STEC possesses Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2), both of which have A and B subunits. Although STEC containing both Stx1 and Stx2 has been isolated from patients with hemorrhagic colitis, Stx2 is more frequently associated with human disease complications. Thus, the effect of Lactobacillus, Pediococcus, and Bifidobacterium strains on stx2A expression levels in STEC was investigated. Lactic acid bacteria and bifidobacteria were isolated from farm animals, dairy, and human sources and included L. rhamnosus GG, L. curvatus, L. plantarum, L. jensenii, L. acidophilus, L. casei, L. reuteri, P. acidilactici, P. cerevisiae, P. pentosaceus, B. thermophilum, B. boum, B. suis and B. animalis. E. coli O157:H7 (EDL 933) was coincubated with sub-lethal concentrations of each probiotic strain. Following RNA extraction and cDNA synthesis, relative stx2A mRNA levels were determined according to a comparative critical threshold (Ct) real-time PCR. Data were normalized to the endogenous control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the level of stx2A expression between treated and untreated STEC was compared. Observed for all probiotic strains tested, stx2A was down-regulated, when compared to the control culture. Probiotic production of organic acids, as demonstrated by a decrease in pH, influenced stx2A gene expression.  相似文献   

11.
AIMS: To evaluate Shiga toxin-producing Eschericha coli (STEC) prevalence in 1039 French raw milk cheeses including soft, hard, unripened and blue mould cheeses, and to characterize the STEC strains isolated (virulence genes and serotypes). METHODS AND RESULTS: STEC strains were recovered from cheese samples by colony hybridization. These strains were then serotyped and genetically characterized. These strains (32 STEC) were then recovered from 18 of 136 stx-positive samples: 19 strains had stx2 variant genes stx(2vh-a) (n = 2), stx(2NV206) (n = 2), stx(2EDL933) (n = 4) and stx2d (n = 11). Thirty strains had the stx1 gene and one strain, the eae gene. Combinations of stx2 and stx1 genes were present in 17 (81%) of the STEC strains. Nineteen strains belonged to the O6 serogroup and the other strains belonged to the O174, O175, O176, O109, O76, O162 and O22 serogroups in decreasing frequency. CONCLUSIONS: No conclusion can be drawn at the moment concerning the potential risk to consumers because the O6:H1 serotype has already been found associated with the haemolytic uremic syndrome and almost no isolate had the eae gene. SIGNIFICANCE AND IMPACT OF THE STUDY: The large number of STEC strains recovered from the cheese samples evaluated in this study emphasizes the health risks associated with raw milk cheeses. This further emphasizes the immediate need to identify and implement effective pre- and postharvest control methods that decrease STEC carriage by dairy cattle and to eliminate contamination of their cheeses during processing.  相似文献   

12.
Aims:  Sheep are important carriers of Shiga toxin-producing Escherichia coli (STEC) in several countries. However, there are a few reports about ovine STEC in American continent.
Methods and Results:  About 86 E. coli strains previously isolated from 172 healthy sheep from different farms were studied. PCR was used for detection of stx 1, stx 2, eae, ehxA and saa genes and for the identification of intimin subtypes. Restriction fragment length polymorphism (RFLP)–PCR was performed to investigate the variants of stx 1 and stx 2, and the flagellar antigen ( fli C) genes in nonmotile isolates. Five isolates were eae + and stx , and belonged to serotypes O128:H2/β-intimin (2), O145:H2/γ, O153:H7/β and O178:H7/ε. Eighty-one STEC isolates were recovered, and the stx genotypes identified were stx 1c stx 2d-O118 (46·9%), stx 1c (27·2%), stx 2d-O118 (23·4%), and stx 1c stx 2dOX3a (2·5%). Pulsed-field gel electrophoresis (PFGE) revealed 27 profiles among 53 STEC and atypical enteropathogenic Escherichia coli (EPEC) isolates.
Conclusions:  This study demonstrated that healthy sheep in São Paulo, Brazil, can be carriers of potential human pathogenic STEC and atypical EPEC.
Significance and Impact of the Study:  As some of the STEC serotypes presently found have been involved with haemolytic uraemic syndrome (HUS) in other countries, the important role of sheep as sources of STEC infection in our settings should not be disregarded.  相似文献   

13.
AIMS: To evaluate the occurrence and abundance of phages that carry the stx(1) and stx(2) gene in water samples of different quality. METHODS AND RESULTS: Phages growing on the Shiga toxin-negative Escherichia coli O157:H7 (ATCC 43,888) strain were enumerated by a plaque assay in concentrated raw and treated waste water samples and river water samples. Plaques were investigated for the presence of stx(1) and stx(2) genes by a multiplex/nested PCR procedure. An overall number of 805 plaques were tested for the presence of stx-carrying phages. Stx genes could be demonstrated in 2% (stx(1)) and 16% (stx(2)) of the plaques. Stx-phages were eliminated with approximately the same efficiency in comparison with somatic coliphages during the waste water treatment process. CONCLUSIONS: Due to the low numbers of phages carrying the stx genes 1 and 2 in treated waste water and river water, the dilution and inactivation of host bacteria and the unsuitable conditions for the transduction of host organisms in aquatic environments, it is difficult to derive from the data the direct evidence for a public health problem. SIGNIFICANCE AND IMPACT OF THE STUDY: The results show the quantitative occurrence of stx-carrying phages in waste and river water and confirm the frequent circulation of these viruses in the aquatic environment.  相似文献   

14.
Shiga toxin 2 (Stx2) variants have been found to exhibit not only antigenic divergence, but also differences in toxicity for tissue culture cells and animals. To clarify whether all or just a subset of Stx2 variants are important for the virulence of Shiga toxin-producing Escherichia coli, we designed PCR primers to detect and type all reported variants. We classified them into four groups according to the nucleotide sequences of the Stx2 family; for example, group 1 (G1) contains VT2vha and group 2 (G2) contains VT2d-Ount. The 120 strains of Shiga toxin-producing E. coli used in this study were isolated from humans in Japan between 1986 and 1999. Among the four variant groups, the G1 gene only was detected in 23 of the 120 clinical strains (19.2%) and all belonged to the O157 serotype. G1 is considered the most important Stx2 variant group in terms of human pathogenicity. A multiplex PCR that can detect the stx1, stx2, and G1 genes was developed as a means of rapid and easy typing to better understand the roles of the different types of Stx.  相似文献   

15.
IS1203v is an insertion sequence which has been found in inactivated Shiga toxin 2 genes of Escherichia coli O157:H7. We analyzed the transpositional mechanism of IS1203v in order to investigate whether the Shiga toxin 2 genes inactivated by IS1203v could revert to the wild type. When the transposase activity of IS1203v was enhanced by artificial frameshifting, IS1203v was obviously excised from the Shiga toxin 2 gene in a circular form. The IS1203v circle consisted of the entire IS1203v, but an extra 3-bp sequence (ATC) intervened between the 5′ and 3′ ends of IS1203v. The extra 3-bp sequence was identical to a direct repeat which was probably generated upon insertion. Moreover, we detected the Shiga toxin 2 gene with a precise excision of IS1203v. In the wild-type situation, the transposition products of IS1203v could be observed by PCR amplification. These results show that IS1203v can transpose in a nonreplicative manner and that the Shiga toxin gene inactivated by this insertion sequence can revert to the wild type.  相似文献   

16.
Aims:  To study the seasonal variation of Shiga toxin-encoding genes ( stx ) and to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) O157 in cattle belonging to five dairy farms from Argentina.
Methods and Results:  Rectal swab samples were collected from 360 dairy cows in each season and 115 and 137 calves in autumn and in spring, respectively. The stx were investigated by multiplex PCR and it was used as the indicator for STEC. Samples positives for stx were tested by PCR for eae-γ1 of E. coli O157 and then subjected to IMS (immunomagnetic separation). In positive animals significant differences in the prevalence of stx between warm and cold seasons were detected. In warm seasons, stx1  +  stx2 increased and stx1 decreased, independently of the animal category. The prevalence of STEC O157 in cows and calves were 0·2% and 0·8%, respectively.
Conclusions:  This work provides new data about the occurrence of stx and STEC O157 in dairy herds from Argentina and suggests a relationship between the type of stx and season of year.
Significance and Impact of Study:  The detection of STEC O157 and the seasonality of stx and its types provide an opportunity to improve control strategies designed to prevent contamination of food products and transmission animal-person.  相似文献   

17.
We characterized two Shiga toxin-producing Escherichia coli (STEC) O86:HNM isolates from a patient with hemolytic uremic syndrome (HUS) or bloody diarrhea. Both of them did not possess the eaeA gene. However, the isolate from a HUS patient carried genetic markers of enteroaggregative E. coli (EAEC) and showed aggregative adherence pattern to HEp-2 cells. The other isolate from bloody diarrhea, which was negative with EAEC markers, was diffusely adhered to HEp-2 cells. The stx2 gene in both E. coli O86:HNM strains was encoded in each infectious phage, which was partially homologous to that of strain EDL933, a STEC O157:H7. These results will help to explain the genotypic divergences of STEC.  相似文献   

18.
AIMS: To investigate if cattle on the same farm as sheep are a possible risk factor for stx in sheep and to determine whether or not sheep and cattle on the same farm share the same stx pool. METHODS AND RESULTS: Faecal samples from sheep and cattle were screened for stx by polymerase chain reaction (PCR). Of these samples, 87.6 and 64.6% were stx positive in sheep and cattle, respectively. There was no difference in stx occurrence in sheep from farms with or without cattle. From stx positive samples, 118 Shiga toxin-producing Escherichia coli (STEC) isolates were recovered by a filter-hybridization method. Serotyping, PCR and pulsed-field gel electrophoresis (PFGE) showed that there was a distinct association between serotypes, stx profiles and animal species. CONCLUSIONS: Keeping animals together in pens, which enhances faecal-oral contact, is suggested as a possible explanation for the differences seen in stx occurrence. Sheep and cattle isolates are distinctly different in serotype and stx profile although isolated from the same farm, and are more related to isolates within the same serotype with the same stx profile than to isolates with different serotype from the same farm. SIGNIFICANCE AND IMPACT OF STUDY: The study supports the animal-host relationship hypothesis suggested in other studies and indicates that the STEC sheep reservoir in Norway may not pose a serious public health risk.  相似文献   

19.
【目的】探讨江苏某羊场健康绵羊体内产志贺毒素大肠杆菌的带菌和流行情况,同时就分离株的致病力和对Vero细胞的毒性作用作了研究。【方法】基于本实验室已经建立的EHEC O157:H7 EDL933W株的stx1、stx2、eaeA、hlyA四个基因的多重PCR检测并配合选择性增菌、平板筛选等方法对STEC进行分离鉴定。【结果】在为期6个月的连续跟踪调查中,共分离到STEC菌株107株,分离率为19.4%(107/550)。分离株属于41种O血清型、62种O:H血清型,未定型(ONT)有22株,粗糙型(OR)1株。其中属于绵羊STEC的优势血清型有O5(2株)、O91(1株)、O103(1株)。本文检测到的优势血清型为O93,stx2阳性菌株的分离率较stx1阳性菌株的分离率高,LD50测定结果表明分离株对小鼠致病力不高,受试的3个分离株均不能致小鼠死亡。对107株stx阳性分离株噬菌斑试验表明,71株阳性菌株携带噬菌体(66.3%,71/109)。受试分离株进行Vero细胞毒性试验,其中有一个菌株stx基因阳性但不能使Vero细胞产生病变。【结论】绵羊是STEC的天然宿主,可健康带菌。虽然STEC分离株对小鼠的致病力较弱,但不能排除其对人类安全的威胁。STEC携带志贺毒素基因并不意味着一定表达志贺毒素,需对志贺毒素的表达及调控机理做进一步的研究。  相似文献   

20.
STEC has emerged as an important group of enteric pathogens worldwide. In this study, rabbit polyclonal Stx1 and Stx2 antisera were raised and employed in the standardization of immunoassays for STEC detection. Using their respective antisera, the limit of detection of the toxin was 35.0 pg for Stx1 and 5.4 pg for Stx2. By immunoblotting, these antisera recognized both toxin subunits. Cross-reactivity was observed in the A subunit, but only Stx2 antiserum was able to neutralize the cytotoxicity of both toxins in the Vero cell assay. Six stx-harboring E. coli isolates were analyzed for their virulence traits. They belonged to different serotypes, including the O48:H7, described for the first time in Brazil. Only three strains harbored eae, and the e-hly gene and hemolytic activity was detected in five strains. Three isolates showed new stx2 variants (stx(2v-ha) and stx(2vb-hb)). The ELISA assay detected all six isolates, including one VCA-negative isolate, while the immunodot assay failed to detect one isolate, which was VCA-positive. In contrast, the colony-immunoblot assay detected only one VCA-positive isolate. Our results demonstrate that among the immunoassays developed in this study, the immunodot, and particularly the ELISA, appear as perspective for STEC detection in developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号