首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基质金属蛋白酶对肿瘤细胞生物学行为调节   总被引:1,自引:0,他引:1  
近年,对于基质金属蛋白酶(matrix metalloproteinases,MMPs)与肿瘤发生发展的关系有了新的诠释,MMPs的功能已不仅限于通过降解细胞外基质来促进肿瘤的侵袭和转移,它们还可通过水解生长因子、黏附分子、受体等非基质蛋白而触发一系列生物学效应,调节肿瘤的生长、分化、凋亡以及肿瘤的血管生成和免疫逃避。重新认识MMPs的功能,将有助于设计以MMPs为靶标的新型抗肿瘤药物。  相似文献   

2.
Since Gross and Lapiere firstly discovered matrix metalloproteinases (MMPs) as important collagenolytic enzymes during amphibian tadpole morphogenesis in 1962, this intriguing family of extracellular proteinases has been implicated in various processes of developmental biology. However, the pathogenic roles of MMPs in human diseases such as cancer have also garnered widespread attention. The most straightforward explanation for their role in cancer is that MMPs, through extracellular matrix degradation, pave the way for tumor cell invasion and metastasis. While this notion may be true for many circumstances, we now know that, depending on the context, MMPs may employ additional modes of functionality. Here, we will give an update on the function of MMPs in development and cancer, which may directly regulate signaling pathways that control tissue homeostasis and may even work in a non-proteolytic manner. These novel findings about the functionality of MMPs have important implications for MMP inhibitor design and may allow us to revisit MMPs as drug targets in the context of cancer and other diseases.  相似文献   

3.
4.
This review focuses on matrix metalloproteinases (MMPs)-2 (gelatinase A) and -9 (gelatinase B), both of which are cancer-associated, secreted, zinc-dependent endopeptidases. Gelatinases cleave many different targets (extracellular matrix, cytokines, growth factors, chemokines and cytokine/growth factor receptors) that in turn regulate key signaling pathways in cell growth, migration, invasion, inflammation and angiogenesis. Interactions with cell surface integral membrane proteins (CD44, αVβ/αβ1/αβ2 integrins and Ku protein) can occur through the gelatinases' active site or hemopexin-like C-terminal domain. This review evaluates the recent literature on the non-enzymatic, signal transduction roles of surface-bound gelatinases and their subsequent effects on cell survival, migration and angiogenesis. Gelatinases have long been drug targets. The current status of gelatinase inhibitors as anticancer agents and their failure in the clinic is discussed in light of these new data on the gelatinases' roles as cell surface transducers — data that may lead to the design and development of novel, gelatinase-targeting inhibitors.  相似文献   

5.
Matrix metalloproteinases in tumor-host cell communication   总被引:11,自引:0,他引:11  
The microenvironment or stroma immediately surrounding tumor cells consists of a three-dimensional extracellular matrix (ECM) and stromal cells such as fibroblasts and inflammatory cells. The matrix metalloproteinases (MMPs) constitute a family of over 24 members, which collectively are capable of degrading virtually the entire ECM. Strict regulation of MMP expression is critical in order to maintain proper ECM homeostasis, but in disease states such as cancer there is often a high level of MMP activity at the tumor-stroma interface. Several studies have documented the importance of MMP-mediated ECM destruction in the successful dissemination of several tumor types, but it has become increasingly clear that they are also involved in earlier stages of tumorigenesis. MMPs are implicated in a wide variety of roles that can assist tumor initiation, growth, migration, angiogenesis, the selection of apoptosis-resistant subpopulations, and in invasion and metastasis. Interestingly, the factors responsible for many of these effects are derived from the cell surfaces of the tumor or stromal cells or are embedded in the ECM. Therefore, the MMPs can no longer be thought of solely as ECM destructionists, but as part of an elegant communication system through which the tumor interacts with the stroma.  相似文献   

6.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which can synergistically degrade the major components of extracellular matrix (ECM). A key role in maintaining the balance between ECM deposition and degradation in several physio-pathological processes is carried out, through multiple biological functions, by four members of the tissue inhibitors of metalloproteinases (TIMPs) family. TIMP-1 and TIMP-2 are capable of inhibiting the activities of MMPs, can inhibit tumour growth, invasion and metastasis, exhibit growth factor-like activity, can inhibit angiogenesis and suppress programmed cell death (PCD) independently of the MMP-inhibitory activity. TIMP-3 is the only member which is tightly bound to ECM, inhibits TNF- converting enzyme and induces PCD through the stabilization of TNF- receptors on the cell surface. TIMP-4 plays a role in ECM homeostasis in a tissue-specific fashion and its overexpression induces PCD. The aim of this article is to review the exciting and intriguing literature on TIMPs, with special emphasis on their conflicting-paradoxical roles in PCD and their potential clinical usefulness.  相似文献   

7.
Matrix metalloproteinases (MMPs) are a superfamily of Zn2+‐dependent proteases that are capable of cleaving the proteinaceous component of the extracellular matrix (ECM). The ECM is a critical medium for cell–cell interactions and can also directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation by MMPs are expected to affect cell fate and behavior during many developmental and pathological processes. Numerous studies have shown that the expression of MMP mRNAs and proteins associates tightly with diverse developmental and pathological processes, such as tumor metastasis and mammary gland involution. In vivo evidence to support the roles of MMPs in these processes has been much harder to get. Here, we will review some of our studies on MMP11, or stromelysin‐3, during the thyroid hormone‐dependent amphibian metamorphosis, a process that resembles the so‐called postembryonic development in mammals (from a few months before to several months after birth in humans when organ growth and maturation take place). Our investigations demonstrate that stromelysin‐3 controls apoptosis in different tissues via at least two distinct mechanisms. Birth Defects Research (Part C) 90:55–66, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
A significant number of myocardial diseases are accompanied by increased synthesis and degradation of the extracellular matrix (ECM) as well as by changed maturation and incorporation of ECM components. Important groups of enzymes responsible for both normal and pathological processes in ECM remodeling are matrix metaloproteinases (MMPs). These enzymes share a relatively conserved structure with a number of identifiable modules linked to their specific functions. The most important function of MMPs is the ability to cleave various ECM components; including such rigid molecules as fibrillar collagen molecules. The amount and activity of MMPs in cardiac tissue are regulated by a range of activating and inhibiting processes. Although MMPs play multifarious roles in many myocardial diseases, here we have focused on their function in ischemic cardiac tissue, dilated cardiomyopathy and hypertrophied cardiac tissue. The inhibition of MMPs by means of synthetic inhibitors seems to be a promising strategy in cardiac disease treatment. Their effects on diseased cardiac tissue have been successfully tested in several experimental studies.  相似文献   

10.
Matrix metalloproteinases: they're not just for matrix anymore!   总被引:27,自引:0,他引:27  
The matrix metalloproteinases (MMPs) have been viewed as bulldozers, destroying the extracellular matrix to permit normal remodeling and contribute to pathological tissue destruction and tumor cell invasion. More recently, the identification of specific matrix and non-matrix substrates for MMPs and the elucidation of the biological consequence of cleavage indicates that perhaps MMPs should be viewed more as pruning shears, playing sophisticated roles in modulating normal cellular behavior, cell-cell communication and tumor progression.  相似文献   

11.
ABSTRACT

Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.  相似文献   

12.
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell–matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds. J. Cell. Biochem. 108: 1233–1243, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell‐matrix and cell‐cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non‐ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase‐3 (MMP‐3) or stromelysin‐1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP‐3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP‐3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP‐3 up‐regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.  相似文献   

14.
Murphy G 《Genome biology》2011,12(11):233-7
Orchestration of the growth and remodeling of tissues and responses of cells to their extracellular environment is mediated by metalloproteinases of the Metzincin clan. This group of proteins comprises several families of endopeptidases in which a zinc atom is liganded at the catalytic site to three histidine residues and an invariant methionine residue. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous protein regulators of the matrix metalloproteinase (MMPs) family, and also of families such as the disintegrin metalloproteinases (ADAM and ADAMTS). TIMPs therefore have a pivotal role in determining the influence of the extracellular matrix, of cell adhesion molecules, and of many cytokines, chemokines and growth factors on cell phenotype. The TIMP family is an ancient one, with a single representative in lower eukaryotes and four members in mammals. Although much is known about their mechanism of action in proteinase regulation in mammalian cells, less is known about their functions in lower organisms. Recently, non-inhibitory functions of TIMPs have been identified in mammalian cells, including signaling roles downstream of specific receptors. There are clearly still questions to be answered with regard to their overall roles in biology.  相似文献   

15.
Orchestration of the growth and remodeling of tissues and responses of cells to their extracellular environment is mediated by metalloproteinases of the Metzincin clan. This group of proteins comprises several families of endopeptidases in which a zinc atom is liganded at the catalytic site to three histidine residues and an invariant methionine residue. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous protein regulators of the matrix metalloproteinase (MMPs) family, and also of families such as the disintegrin metalloproteinases (ADAM and ADAMTS). TIMPs therefore have a pivotal role in determining the influence of the extracellular matrix, of cell adhesion molecules, and of many cytokines, chemokines and growth factors on cell phenotype. The TIMP family is an ancient one, with a single representative in lower eukaryotes and four members in mammals. Although much is known about their mechanism of action in proteinase regulation in mammalian cells, less is known about their functions in lower organisms. Recently, non-inhibitory functions of TIMPs have been identified in mammalian cells, including signaling roles downstream of specific receptors. There are clearly still questions to be answered with regard to their overall roles in biology.  相似文献   

16.
The liver is a large highly vascularized organ with a central function in metabolic homeostasis, detoxification, and immunity. Due to its roles, the liver is frequently exposed to various insults which can cause cell death and hepatic dysfunction. Alternatively, the liver has a remarkable ability to self-repair and regenerate after injury. Liver injury and regeneration have both been linked to complex extracellular matrix (ECM) related pathways. While normal degradation of ECM components is an important feature of tissue repair and remodeling, irregular ECM turnover contributes to a variety of liver diseases. Matrix metalloproteinases (MMPs) are the main enzymes implicated in ECM degradation. MMPs not only remodel the ECM, but also regulate immune responses. In this review, we highlight some of the MMP-attributed roles in acute and chronic liver injury and emphasize the need for further experimentation to better understand their functions during hepatic physiological conditions and disease progression.  相似文献   

17.

Background  

Matrix metalloproteinases (MMPs) are a family of extracellular endopeptidases that degrade the extracellular matrix and other extracellular proteins. Studies in experimental animals demonstrate that MMPs play a number of roles in the detrimental as well as in the beneficial events after spinal cord injury (SCI). In the present correlative investigation, the expression pattern of several MMPs and their inhibitors has been investigated in the human spinal cord.  相似文献   

18.
19.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGF-β) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGF-β-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins, and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.  相似文献   

20.
Macrophages are essential in development, repair and pathology of a variety of tissues via their roles in tissue remodelling, wound healing and inflammation. These biological functions are also associated with a number of human diseases, for example tumour associated macrophages have well defined functions in cancer progression. Xenopus embryonic macrophages arise from a haematopoietic stem cell population by direct differentiation and act as the main mechanism of host defence, before lymphoid cells and a circulatory system have developed. This function is conserved in mouse and human development. Macrophages express a number of matrix metalloproteinases (MMPs), which are central to their function. MMPs are a large family of zinc-dependent endoproteases with multiple roles in extracellular matrix remodelling and the modulation of signalling pathways. We have previously shown MMP-7 to be expressed by Xenopus embryonic macrophages. Here we investigate the role of MMP-7 and two other MMPs (MMP-18 and MMP-9) that are also expressed in the migrating macrophages. Using morpholino (MO) mediated knockdown of each of the MMPs we demonstrate that they are necessary for normal macrophage migration in vivo. The loss-of-function effect can be rescued using the specific MMPs, altered to be resistant to morpholinos but not by overexpression of the other MMPs. Double and triple morpholino knockdowns further suggest that these MMPs act combinatorily to promote embryonic macrophage migration. Thus, our results imply that these three MMPs have distinct functions, which together are crucial to mediate macrophage migration in the developing embryo. This demonstrates conclusively that MMPs are required for normal macrophage cell migration in the whole organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号