首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian CNS contains a ubiquitous population of glial progenitors known as NG2+ cells that have the ability to develop into oligodendrocytes and undergo dramatic changes in response to injury and demyelination. Although it has been reported that NG2+ cells are multipotent, their fate in health and disease remains controversial. Here, we generated PDGFαR-CreER transgenic mice and followed their fate in vivo in the developing and adult CNS. These studies revealed that NG2+ cells in the postnatal CNS generate myelinating oligodendrocytes, but not astrocytes or neurons. In regions of neurodegeneration in the spinal cord of ALS mice, NG2+ cells exhibited enhanced proliferation and accelerated differentiation into oligodendrocytes but remained committed to the oligodendrocyte lineage. These results indicate that NG2+ cells in the normal CNS are oligodendrocyte precursors with restricted lineage potential and that cell loss and gliosis are not sufficient to alter the lineage potential of these progenitors.  相似文献   

2.
In the adult CNS, antibodies to the NG2 chondroitin sulphate proteoglycan (CSPG) label a large population of glia that have the antigenic phenotype of oligodendrocyte progenitor cells (OPC). However, NG2 expressing glia have the morphological phenotype of astrocytes, not OPC. We propose adult NG2 expressing glia are a distinct mature glial type, which we have called syantocytes or synantoglia after the Greek ‘to contact’, because they specifically contact neurons and axons at synapses and nodes of Ranvier, respectively. Synantocytes are highly complex cells that elaborate multiple branching processes and are an equally significant population in both white and grey matter. We provide evidence that phenotypically distinct synantocytes develop postnatally and that neither postnatal nor adult synantocytes depend on axons for their survival, indicating they respond with markedly different behaviours to the environmental cues and axonal signals that control the differentiation of OPC into oligodendrocytes. The primary response of synantocytes to changes in the CNS environment is a rapid and localised reactive gliosis. Reactive synantocytes interact intimately with astrocytes and macrophages at lesion sites, consistent with them playing a key role in the orchestration of scar formation that protects the underlying neural tissue. It is our hypothesis that synantocytes are specialised to monitor and respond to changes in the integrity of the CNS, by way of their cellular contacts, repertoire of plasmalemmal receptors and the NG2 molecule itself. To paraphrase Del Rio Hortega, we propose that synantocytes are the fifth element in the CNS, in addition to neurons, astrocytes, oligodendrocytes and microglia.  相似文献   

3.
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated during development through the proliferation and differentiation of a distinct progenitor population. Not all oligodendrocyte progenitors generated during development differentiate, however, and large numbers of oligodendrocyte progenitors are present in the adult CNS, particularly in white matter. These "adult progenitors" can be identified through expression of the NG2 proteoglycan. Adult oligodendrocyte progenitors are thought to develop from the original pool of progenitors and in vitro are capable of differentiating into oligodendrocytes. Why these cells fail to differentiate in the intact CNS is currently unclear. Here we show that contact with CNS myelin inhibits the maturation of immature oligodendrocyte progenitors. The inhibition of oligodendrocyte progenitor maturation is a characteristic of CNS myelin that is not shared by several other membrane preparations including adult and neonatal neural membrane fractions, PNS myelin, or liver. This inhibition is concentration dependent, is reversible, and appears not to be mediated by either myelin basic protein or basic fibroblast growth factor. Myelin-induced inhibition of oligodendrocyte progenitor maturation provides a mechanism to explain the generation of a residual pool of immature oligodendrocyte progenitors in the mature CNS.  相似文献   

4.
The function and origin of NG2+ cells in the adult brain are still controversial. A large amount of data is available which strongly indicates that adult NG2-expressing cells form a heterogeneous population, constituted by oligodendrocyte precursor cells (OPCs) and a fourth novel type of glial cells named the synantocytes. Whether these two populations derive from the progressive maturation of perinatal NG2+ OPCs or are generated as separate populations is not known. We used organotypic cultures of newborn mouse cerebellum depleted, by anti-mitotic drug treatment, of their NG2+ cells with perinatal features (high proliferating rate and high oligodendrocytic differentiation ability). In these cultures, despite the lack of myelin after 14 days in vitro, numerous NG2+ cells remained. We show that these BrdU-resistant cells were able to slowly divide, as adult NG2+ cells do. Although many of these cells expressed O4, only a very small fraction of them was further engaged in oligodendrocyte lineage, as they had an extremely poor capacity to generate myelin sheaths to the Purkinje cell axons. These results support the view that at least two distinct populations of NG2+ cells coexist in the cerebellum from birth: one with the young OPC characteristics, another with adult NG2+ cell characteristics. Thus, a fraction of adult NG2+ cells do not derive from the maturation of perinatal OPCs.  相似文献   

5.
Cells that express the NG2 proteoglycan (NG2+ cells) comprise a unique population of glial cells in the central nervous system. While there is no question that some NG2+ cells differentiate into oligodendrocytes during development, the persistence of numerous NG2+ cells in the mature CNS has raised questions about their identity, relation to other CNS cell types, and functions besides their progenitor role. NG2+ cells also express the alpha receptor for platelet-derived growth factor (PDGF αR), a receptor that mediates oligodendrocyte progenitor proliferation during development. Antigenically, NG2+ cells are distinct from fibrous and protoplasmic astrocytes, resting microglia, and mature oligodendrocytes. Therefore, we propose the term polydendrocytesto refer to all NG2-expressing glial cells in the CNS parenchyma. This distinguishes them from the classical glial cell types and identifies them as the fourth major glial population in the CNS. Recent observations suggest that polydendrocytes are complex cells that physically and functionally interact with other cell types in the CNS. Committed oligodendrocyte progenitor cells arise from restricted foci in the ventral ventricular zone in both spinal cord and brain. It remains to be clarified whether there are multiple sources of oligodendrocytes, and if so whether polydendrocytes (NG2+ cells) represent progenitor cells of all oligodendrocyte lineages. Proliferation of NG2+ cells during early development appears to be dependent on PDGF, but the regulatory mechanisms that govern NG2+ cell proliferation in the mature CNS remain unknown. Pulse-chase labeling with bromodeoxyuridine indicates that polydendrocytes that proliferate in the postnatal spinal cord differentiate into oligodendrocytes. Novel experimental approaches are being developed to further elucidate the functional properties and differentiation potential of polydendrocytes.  相似文献   

6.
A Nishiyama 《Human cell》2001,14(1):77-82
There exists a significantly large population of glial cells in the mammalian central nervous system (CNS) that can be identified by the expression of the NG2 proteoglycan. Cells that express NG2 (NG2 cells) are found in the developing and mature CNS and are distinct from neurons, astrocytes, microglia, and mature oligodendrocytes. They are often referred to as oligodendrocyte progenitor cells because of their ability to differentiate into oligodendrocytes in culture. However, the observation that a large number of NG2 cells persist uniformly and ubiquitously in the adult CNS and display a differentiated morphology is not entirely consistent with the notion that NG2 cells are all oligodendrocyte progenitor cells. The role of NG2 cells in oligodendrocyte regeneration and their non-progenitor role in the mature CNS are discussed in this review.  相似文献   

7.
8.
Neuron glia antigen-2 ((NG2), also known as chondroitin sulphate proteoglycan 4, or melanoma-associated chondroitin sulfate proteoglycan) is a type-1 membrane protein expressed by many central nervous system (CNS) cells during development and differentiation and plays a critical role in proliferation and angiogenesis. ‘NG2’ often references either the protein itself or the highly proliferative and undifferentiated glial cells expressing high levels of NG2 protein. NG2 glia represent the fourth major type of neuroglia in the mammalian nervous system and are classified as oligodendrocyte progenitor cells by virtue of their committed oligodendrocyte generation in developing and adult brain. Here, we discuss NG2 glial cells as well as NG2 protein and its expression and role with regards to CNS neoplasms as well as its potential as a therapeutic target for treating childhood CNS cancers.  相似文献   

9.
NG2 cells generate both oligodendrocytes and gray matter astrocytes   总被引:8,自引:0,他引:8  
NG2 glia constitute a fourth major glial cell type in the mammalian central nervous system (CNS) that is distinct from other cell types. Although circumstantial evidence suggests that some NG2 glia differentiate into oligodendrocytes, their in vivo fate has not been directly examined. We have used the bacterial artificial chromosome (BAC) modification technique to generate transgenic mice that express DsRed or Cre specifically in NG2-expressing (NG2+) cells. In NG2DsRedBAC transgenic mice, DsRed was expressed specifically in NG2+ cells throughout the postnatal CNS. When the differentiation potential of NG2+ cells in vitro was examined using DsRed+NG2+ cells purified from perinatal transgenic brains, the majority of the cells either remained as NG2+ cells or differentiated into oligodendrocytes. In addition, DsRed+NG2+ cells also differentiated into astrocytes. The in vivo fate of NG2 glia was examined in mice that were double transgenic for NG2creBAC and the Cre reporter Z/EG. In the double transgenic mice, the Cre reporter EGFP was detected in myelinating oligodendrocytes and in a subpopulation of protoplasmic astrocytes in the gray matter of ventrolateral forebrain but not in fibrous astrocytes of white matter. These observations suggest that NG2+ cells are precursors of oligodendrocytes and some protoplasmic astrocytes in gray matter.  相似文献   

10.
Ju PJ  Liu R  Yang HJ  Xia YY  Feng ZW 《Cytotherapy》2012,14(5):608-620
Background aimsThe widespread NG2-expressing neural progenitors in the central nervous system (CNS) are considered to be multifunctional cells with lineage plasticity, thereby possessing the potential for treating CNS diseases. Their lineages and functional characteristics have not been completely unraveled. The present study aimed to disclose the lineage potential of clonal NG2+ populations in vitro and in vivo.MethodsTwenty-four clones from embryonic cerebral cortex-derived NG2+ cells were induced for oligodendrocyte, astrocyte, neuronal and chondrocyte differentiation. The expression profiles of neural progenitor markers chondroitin sulfate proteoglycan 4 (NG2), platelet-derived growth factor-α receptor (PDGFαR); nestin and neuronal cell surface antigen (A2B5) were subsequently sorted on cells with distinct differentiation capacity. Transplantation of these NG2+ clones into the spinal cord was used to examine their lineage potential in vivo.ResultsIn vitro differentiation analysis revealed that all the clones could differentiate into oligodendrocytes, and seven of them were bipotent (oligodendrocytes and astrocytes). Amazingly, one clone exhibited a multipotent capacity of differentiating into not only neuronal–glial lineages but also chondrocytes. These distinct subtypes were further found to exhibit phenotypic heterogeneity based on the examination of a spectrum of neural progenitor markers. Transplanted clones survived, migrated extensively and differentiated into oligodendrocytes, astrocytes or even neurons to integrate with the host spinal cord environmentConclusionsThese results suggest that NG2+ cells contain heterogeneous progenitors with distinct differentiation capacities, and the immortalized clonal NG2+ cell lines might provide a cell source for treating spinal cord disorders.  相似文献   

11.
Partial injury to the central nervous system (CNS) is exacerbated by additional loss of neurons and glia via toxic events known as secondary degeneration. Using partial transection of the rat optic nerve (ON) as a model, we have previously shown that myelin decompaction persists during secondary degeneration. Failure to repair myelin abnormalities during secondary degeneration may be attributed to insufficient OPC proliferation and/or differentiation to compensate for loss of oligodendrocyte lineage cells (oligodendroglia). Following partial ON transection, we found that sub-populations of oligodendroglia and other olig2+ glia were differentially influenced by injury. A high proportion of NG2+/olig2–, NG2+/olig2+ and CC1−/olig2+ cells proliferated (Ki67+) at 3 days, prior to the onset of death (TUNEL+) at 7 days, suggesting injury-related cues triggered proliferation rather than early loss of oligodendroglia. Despite this, a high proportion (20%) of the NG2+/olig2+ OPCs were TUNEL+ at 3 months, and numbers remained chronically lower, indicating that proliferation of these cells was insufficient to maintain population numbers. There was significant death of NG2+/olig2– and NG2−/olig2+ cells at 7 days, however population densities remained stable, suggesting proliferation was sufficient to sustain cell numbers. Relatively few TUNEL+/CC1+ cells were detected at 7 days, and no change in density indicated that mature CC1+ oligodendrocytes were resistant to secondary degeneration in vivo. Mature CC1+/olig2– oligodendrocyte density increased at 3 days, reflecting early oligogenesis, while the appearance of shortened myelin internodes at 3 months suggested remyelination. Taken together, chronic OPC decreases may contribute to the persistent myelin abnormalities and functional loss seen in ON during secondary degeneration.  相似文献   

12.
Differentiation of human neural progenitors into neuronal and glial cell types offers a model to study and compare molecular regulation of neural cell lineage development. In vitro expansion of neural progenitors from fetal CNS tissue has been well characterized. Despite the identification and isolation of glial progenitors from adult human sub-cortical white matter and development of various culture conditions to direct differentiation of fetal neural progenitors into myelin producing oligodendrocytes, acquiring sufficient human oligodendrocytes for in vitro experimentation remains difficult. Differentiation of galactocerebroside+ (GalC) and O4+ oligodendrocyte precursor or progenitor cells (OPC) from neural precursor cells has been reported using second trimester fetal brain. However, these cells do not proliferate in the absence of support cells including astrocytes and neurons, and are lost quickly over time in culture. The need remains for a culture system to produce cells of the oligodendrocyte lineage suitable for in vitro experimentation.Culture of primary human oligodendrocytes could, for example, be a useful model to study the pathogenesis of neurotropic infectious agents like the human polyomavirus, JCV, that in vivo infects those cells. These cultured cells could also provide models of other demyelinating diseases of the central nervous system (CNS). Primary, human fetal brain-derived, multipotential neural progenitor cells proliferate in vitro while maintaining the capacity to differentiate into neurons (progenitor-derived neurons, PDN) and astrocytes (progenitor-derived astrocytes, PDA) This study shows that neural progenitors can be induced to differentiate through many of the stages of oligodendrocytic lineage development (progenitor-derived oligodendrocytes, PDO). We culture neural progenitor cells in DMEM-F12 serum-free media supplemented with basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF-AA), Sonic hedgehog (Shh), neurotrophic factor 3 (NT-3), N-2 and triiodothyronine (T3). The cultured cells are passaged at 2.5e6 cells per 75cm flasks approximately every seven days. Using these conditions, the majority of the cells in culture maintain a morphology characterized by few processes and express markers of pre-oligodendrocyte cells, such as A2B5 and O-4. When we remove the four growth factors (GF) (bFGF, PDGF-AA, Shh, NT-3) and add conditioned media from PDN, the cells start to acquire more processes and express markers specific of oligodendrocyte differentiation, such as GalC and myelin basic protein (MBP). We performed phenotypic characterization using multicolor flow cytometry to identify unique markers of oligodendrocyte.  相似文献   

13.
Neurogenesis is known to persist in the adult mammalian central nervous system (CNS). The identity of the cells that generate new neurons in the postnatal CNS has become a crucial but elusive issue. Using a transgenic mouse, we show that NG2 proteoglycan-positive progenitor cells that express the 2',3'-cyclic nucleotide 3'-phosphodiesterase gene display a multipotent phenotype in vitro and generate electrically excitable neurons, as well as astrocytes and oligodendrocytes. The fast kinetics and the high rate of multipotent fate of these NG2+ progenitors in vitro reflect an intrinsic property, rather than reprogramming. We demonstrate in the hippocampus in vivo that a sizeable fraction of postnatal NG2+ progenitor cells are proliferative precursors whose progeny appears to differentiate into GABAergic neurons capable of propagating action potentials and displaying functional synaptic inputs. These data show that at least a subpopulation of postnatal NG2-expressing cells are CNS multipotent precursors that may underlie adult hippocampal neurogenesis.  相似文献   

14.
Objectives:  The fate choice of neural progenitor cells could be dictated by local cellular environment of the adult CNS. The aim of our study was to investigate the effect of hippocampal tissue on differentiation and maturation of oligodendrocyte NG2 precursor cells.
Materials and methods:  Hippocampal slice culture was established from the brains of 7-day-old rats. NG2 precursor cells, obtained from a 12-day-old mixed primary culture of neonatal rat cerebral hemispheres, were labelled with chloromethyl-fluorescein-diacetete and seeded on the hippocampal slices. After 7–14 days in co-culture, cells were stained with neural markers.
Results:  NG2 cells differentiated predominantly into oligodendrocytes, presenting various stages of maturation: progenitors (NG2), pre-oligodendrocytes (O4) and finally mature GalC-positive cells. However, except for a few cells with astrocyte-specific S100b staining, a considerable number of these cells differentiated into neurons: TUJ+ and even MAP-2+ cells were frequently observed. Moreover, a certain population of these cells preserved proliferative properties of primary precursor cells, as revealed by Ki67 expression.
Conclusions:  The neuronal micro-environment provided by the culture of hippocampal slices is potent for induction of neurogenesis from oligodendrocyte NG2+/PDGFRα+/CNP+ progenitor cells and promotes their differentiation not only into macroglia but also into neurons. It also sustains their proliferative capacity. The results indicate the crucial role of the local cellular environment in fate decision of primary NG2+ multipotent neural progenitor cells, which may affect their behaviour after transplantation into the central nervous system.  相似文献   

15.
Lu QR  Sun T  Zhu Z  Ma N  Garcia M  Stiles CD  Rowitch DH 《Cell》2002,109(1):75-86
The oligodendrocyte lineage genes Olig1 and Olig2 encode related bHLH proteins that are coexpressed in neural progenitors. Targeted disruption of these two genes sheds light on the ontogeny of oligodendroglia and genetic requirements for their development from multipotent CNS progenitors. Olig2 is required for oligodendrocyte and motor neuron specification in the spinal cord. Olig1 has roles in development and maturation of oligodendrocytes, evident especially within the brain. Both Olig genes contribute to neural pattern formation. Neither Olig gene is required for astrocytes. These findings, together with fate mapping analysis of Olig-expressing cells, indicate that oligodendrocytes are derived from Olig-specified progenitors that give rise also to neurons.  相似文献   

16.
The subventricular zone (SVZ) of the developing mammalian forebrain gives rise to astrocytes and oligodendrocytes in the neocortex and white matter, and neurons in the olfactory bulb in perinatal life. We have examined the developmental fates and spatial distributions of the descendants of single SVZ cells by infecting them in vivo at postnatal day 0-1 (P0-1) with a retroviral "library". In most cases, individual SVZ cells gave rise to either oligodendrocytes or astrocytes, but some generated both types of glia. Members of glial clones can disperse widely through the gray and white matter. Progenitors continued to divide after stopping migration, generating clusters of related cells. However, the progeny of a single SVZ cell does not differentiate synchronously: individual clones contained both mature and less mature glia after short or long intervals. For example, progenitors that settled in the white matter generated three types of clonal oligodendrocyte clusters: those composed of only myelinating oligodendrocytes, of both myelinating oligodendrocytes and non-myelinating oligodendrocytes, or of only non-myelinating cells of the oligodendrocyte lineage. Thus, some progenitors do not fully differentiate, but remain immature and may continue to cycle well into adult life.  相似文献   

17.
Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques.  相似文献   

18.
The NG2 proteoglycan is believed to be an in vivomarker for oligodendrocyte progenitors found in the developing brain. The prevalence of NG2-expressing cells that remain in the adult CNS following the end of gliogenesis is significant. Current research is focused on how this cell participates in the normal function of the adult CNS and whether it may be activated by injury and/or contribute to repair. Despite substantial evidence for a sub-population of NG2-expressing cells playing a glial progenitor role in the adult CNS, there is much to be learned. Specifically, the heterogeneity of this population has not been adequately addressed for the adult CNS and while NG2 cells continue to divide in the adult CNS it is not clear what function they serve once myelination is complete. Future studies should elucidate the functional importance of NG2 in a variety of cell functions and shed light on the role NG2-expressing cells play in the intact and diseasedCNS.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号