首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intestinal subepithelial myofibroblasts (ISEMFs) are located in the lamina propria under the epithelial cells. ISEMFs are thought to have an important role in protecting and maintaining the integrity of the epithelial cell layer and also in the process of wound healing. In this study, we report that the membrane-bound proteoglycan NG2 is abundantly distributed in the ISEMF layer of the mouse and human intestines. NG2 immunostaining in this layer is distributed with similar intensity from the crypt to villi. NG2 is also immunolocalized along the membranes of smooth muscle cells in the intestinal muscle layer. However, skeletal and cardiac muscles are not immunostained for NG2, demonstrating selective expression of the proteoglycan by smooth muscle cells. Using electron microscopy, NG2 immunoreactivity was strongly observed along the cell membranes of ISEMF, with weak diffusion into the neighboring matrix, indicative of the presence of some “shed” NG2. This first report of NG2 proteoglycan expression by ISEMF provides insights into the nature of the interaction of these cells with extracellular matrix and/or intestinal epithelial cells.  相似文献   

2.
Oligodendrocyte precursor cells (OPCs) are a newly recognized glial component of the adult central nervous system of unknown function. Antibodies against the NG2 chondroitin sulfate proteoglycan have been useful tools to identify these cells in intact tissue. Here we review studies that show that OPCs react to several types of experimentally induced brain injury. Injury stimulates OPCs to re-enter the cell cycle, divide, and accumulate at the site of damage. OPCs, together with microglia and astrocytes, form the glial scar. Glial scars are thought to inhibit or prevent axonal regeneration and reactive OPCs contribute to this inhibition by producing growth-inhibiting chondroitin sulfate proteoglycans, particularly NG2. In developing animals, NG2 is found in areas, such as the perinotochordal mesenchyme, that are avoided by growing motor and sensory axons. Within the developing CNS, NG2-expressing cells surround the developing optic chiasm and tract and separate it from the overlying diencephalon. Thus, NG2-expressing cells are well positioned to inhibit axonal growth from developing as well as regenerating neurons.  相似文献   

3.
Cells that express the NG2 proteoglycan (NG2+ cells) comprise a unique population of glial cells in the central nervous system. While there is no question that some NG2+ cells differentiate into oligodendrocytes during development, the persistence of numerous NG2+ cells in the mature CNS has raised questions about their identity, relation to other CNS cell types, and functions besides their progenitor role. NG2+ cells also express the alpha receptor for platelet-derived growth factor (PDGF αR), a receptor that mediates oligodendrocyte progenitor proliferation during development. Antigenically, NG2+ cells are distinct from fibrous and protoplasmic astrocytes, resting microglia, and mature oligodendrocytes. Therefore, we propose the term polydendrocytesto refer to all NG2-expressing glial cells in the CNS parenchyma. This distinguishes them from the classical glial cell types and identifies them as the fourth major glial population in the CNS. Recent observations suggest that polydendrocytes are complex cells that physically and functionally interact with other cell types in the CNS. Committed oligodendrocyte progenitor cells arise from restricted foci in the ventral ventricular zone in both spinal cord and brain. It remains to be clarified whether there are multiple sources of oligodendrocytes, and if so whether polydendrocytes (NG2+ cells) represent progenitor cells of all oligodendrocyte lineages. Proliferation of NG2+ cells during early development appears to be dependent on PDGF, but the regulatory mechanisms that govern NG2+ cell proliferation in the mature CNS remain unknown. Pulse-chase labeling with bromodeoxyuridine indicates that polydendrocytes that proliferate in the postnatal spinal cord differentiate into oligodendrocytes. Novel experimental approaches are being developed to further elucidate the functional properties and differentiation potential of polydendrocytes.  相似文献   

4.
NG2 is a chondroitin sulfate proteoglycan that is expressed on dividing progenitor cells of several lineages including glia, muscle, and cartilage. It is an integral membrane proteoglycan with a core glycoprotein of 300 kDa. In the present study we have characterized three molecular forms of the NG2 core protein expressed by different cell lines. Many cell lines that express the full length 300-kDa NG2 core protein also release a 290-kDa form into the medium. This species lacks the cytoplasmic domain but contains almost the entire ectodomain. Two core protein species, the intact 300-kDa form and a truncated 275-kDa form, are expressed at the surface of an NG2-transfected cell line U251NG52. The 275-kDa species lacks the cytoplasmic domain and at least 64 amino acids of the ectodomain. Mild trypsinization of B49 cells also generates the 275-kDa species, suggesting that this component is produced by proteolysis of the 300-kDa form. Conversion of the 300-kDa species to the 275-kDa form in U251NG52 cells is stimulated by reagents such as phorbol esters, which activate protein kinase C. Phorbol esters are also known to induce expression of metalloproteinases such as collagenase and stromelysin, which could be responsible for cleavage of the 300-kDa core protein. Although B49 cells do not spontaneously produce the truncated 275-kDa species, use of monoclonal antibodies against NG2 to block the interaction between NG2 and type VI collagen results in the appearance of the 275-kDa component in these cells. Thus the interaction between NG2 and type VI collagen, which contains a Kunitz-type proteinase inhibitor sequence in the alpha 3 chain, may protect the proteoglycan against proteolysis. This is consistent with the observed deficiency of U251NG52 cells in anchoring type VI collagen at the surface.  相似文献   

5.
The NG2 proteoglycan is characteristically expressed by oligodendrocyte progenitor cells (OPC) and also by aggressive brain tumours highly resistant to chemo- and radiation therapy. Oligodendrocyte-lineage cells are particularly sensitive to stress resulting in cell death in white matter after hypoxic or ischemic insults of premature infants and destruction of OPC in some types of Multiple Sclerosis lesions. Here we show that the NG2 proteoglycan binds OMI/HtrA2, a mitochondrial serine protease which is released from damaged mitochondria into the cytosol in response to stress. In the cytosol, OMI/HtrA2 initiates apoptosis by proteolytic degradation of anti-apoptotic factors. OPC in which NG2 has been downregulated by siRNA, or OPC from the NG2-knockout mouse show an increased sensitivity to oxidative stress evidenced by increased cell death. The proapoptotic protease activity of OMI/HtrA2 in the cytosol can be reduced by the interaction with NG2. Human glioma expressing high levels of NG2 are less sensitive to oxidative stress than those with lower NG2 expression and reducing NG2 expression by siRNA increases cell death in response to oxidative stress. Binding of NG2 to OMI/HtrA2 may thus help protect cells against oxidative stress-induced cell death. This interaction is likely to contribute to the high chemo- and radioresistance of glioma.  相似文献   

6.
The expression of NG2 proteoglycan in the developing rat limb   总被引:3,自引:0,他引:3  
NG2 is a chondroitin sulfate proteoglycan previously found to be expressed by glial progenitor cells of the O2A lineage. We have examined the expression of NG2 in the developing rat limb by immunohistochemistry and northern blot analysis. Staining of embryonic day 14 (E14) rat limb bud sections with polyclonal and monoclonal anti-NG2 antibodies reveals reactivity in the precartilaginous mesenchymal condensation. The staining intensity increases with the differentiation of chondrocytes until E16. NG2 staining is not detected in the mature hypertrophic chondrocytes of E17 and postnatal day 3 (P3) limbs even after treatment of the sections with hyaluronidase or collagenase. Immuno-precipitations with anti-NG2 antibody using 125I-labeled limb cells in culture showed a 400 to 800 x 10(3) Mr proteoglycan species with a core protein size of 300 x 10(3) Mr, comparable to NG2 from O2A cells and neural cell lines. Northern blot analysis reveals the expression of an 8.9 kb mRNA in E16 limbs and at a lower level in P1 cartilage. The northern blot analyses also show that NG2 is distinct from the large aggregating proteoglycan of the cartilage. Our results indicate that in the developing limb cartilage, as in the differentiating oligodendrocytes, NG2 is present on immature cells in the process of differentiating, but its expression is downregulated as terminal differentiation of chondrocytes takes place.  相似文献   

7.
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of β-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility and cell survival.Key words: NG2 proteoglycan, glioma progression, cell motility, cell proliferation, cell survival, tumor vascularization  相似文献   

8.
The proteoglycan nerve/glial antigen (NG) 2 is expressed on multiple cell types and mediates cell proliferation and migration. However, little is known about its function in gene regulation. In this study, we demonstrate that in pericytes and glioblastoma cells intercellular adhesion molecule (ICAM)-1, an essential protein for leukocyte adhesion and transmigration, underlies a NG2-dependent expression. As shown by flow cytometry, Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), silencing of NG2 in human placenta-derived pericytes increased the expression of ICAM-1. Pathway analyses revealed that this is mediated by extracellular-regulated-kinases (ERK) 1/2 signaling. Moreover, leukocyte adhesion to NG2 siRNA-treated pericytes was significantly enhanced when compared to scrambled (scr) siRNA-treated control cells. In vivo, we detected increased ICAM-1 protein levels in the retina of mice lacking NG2 expression. To exclude that this novel mechanism is pericyte-specific, we additionally analyzed the expression of ICAM-1 in dependency of NG2 in two glioblastoma cell lines. We found that A1207 and M059K cells exhibit an inverse expression pattern of NG2 and ICAM-1. Finally, downregulation of NG2 in A1207 cells significantly increased ICAM-1 expression. Taken together, these findings indicate that NG2 may represent a promising target for the modulation of ICAM-1-mediated immune responses.  相似文献   

9.
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor, and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of beta-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility, and cell survival.  相似文献   

10.
Neuron glia antigen-2 ((NG2), also known as chondroitin sulphate proteoglycan 4, or melanoma-associated chondroitin sulfate proteoglycan) is a type-1 membrane protein expressed by many central nervous system (CNS) cells during development and differentiation and plays a critical role in proliferation and angiogenesis. ‘NG2’ often references either the protein itself or the highly proliferative and undifferentiated glial cells expressing high levels of NG2 protein. NG2 glia represent the fourth major type of neuroglia in the mammalian nervous system and are classified as oligodendrocyte progenitor cells by virtue of their committed oligodendrocyte generation in developing and adult brain. Here, we discuss NG2 glial cells as well as NG2 protein and its expression and role with regards to CNS neoplasms as well as its potential as a therapeutic target for treating childhood CNS cancers.  相似文献   

11.
The NG2 chondroitin sulfate proteoglycan is a membrane-spanning molecule expressed by immature precursor cells in a variety of developing tissues. In tightly adherent cell lines with a flattened morphology, NG2 is organized on the cell surface in linear arrays that are highly co-localized with actin and myosin-containing stress fibers in the cytoskeleton. In contrast, microtubules and intermediate filaments in the cytoskeleton exhibit completely different patterns of organization, suggesting that NG2 may use microfilamentous stress fibers as a means of cytoskeletal anchorage. Consistent with this is the observation that cytochalasin D disrupts the organization of both stress fibers in the cytoskeleton and NG2 on the cell surface. Very similar linear cell surface arrays are also seen with three other cell surface molecules thought to interact with the actin cytoskeleton: the α5β1 integrin, the CD44 proteoglycan, and the L1 neuronal cell adhesion molecule. Since the cytoplasmic domains of these four molecules are dissimilar, it seems possible that cytoskeletal anchorage in each case may occur via different mechanisms. One indication of such differences can be seen in colchicine-treated cells which have lost their flattened morphology but still retain long actin-positive tendrils as remnants of the actin cytoskeleton. NG2 and α5β1 are associated with these tendrils while CD44 and L1 are not, suggesting that at least two subclasses of cell surface molecules exist which can interact with different subdomains of the actin cytoskeleton. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The NG2 proteoglycan is believed to be an in vivomarker for oligodendrocyte progenitors found in the developing brain. The prevalence of NG2-expressing cells that remain in the adult CNS following the end of gliogenesis is significant. Current research is focused on how this cell participates in the normal function of the adult CNS and whether it may be activated by injury and/or contribute to repair. Despite substantial evidence for a sub-population of NG2-expressing cells playing a glial progenitor role in the adult CNS, there is much to be learned. Specifically, the heterogeneity of this population has not been adequately addressed for the adult CNS and while NG2 cells continue to divide in the adult CNS it is not clear what function they serve once myelination is complete. Future studies should elucidate the functional importance of NG2 in a variety of cell functions and shed light on the role NG2-expressing cells play in the intact and diseasedCNS.  相似文献   

13.
A Nishiyama 《Human cell》2001,14(1):77-82
There exists a significantly large population of glial cells in the mammalian central nervous system (CNS) that can be identified by the expression of the NG2 proteoglycan. Cells that express NG2 (NG2 cells) are found in the developing and mature CNS and are distinct from neurons, astrocytes, microglia, and mature oligodendrocytes. They are often referred to as oligodendrocyte progenitor cells because of their ability to differentiate into oligodendrocytes in culture. However, the observation that a large number of NG2 cells persist uniformly and ubiquitously in the adult CNS and display a differentiated morphology is not entirely consistent with the notion that NG2 cells are all oligodendrocyte progenitor cells. The role of NG2 cells in oligodendrocyte regeneration and their non-progenitor role in the mature CNS are discussed in this review.  相似文献   

14.
Cells expressing the NG2 proteoglycan can attach, spread, and migrate on surfaces coated with NG2 mAbs, demonstrating that engagement of NG2 can trigger the cytoskeletal rearrangements necessary for changes in cell morphology and motility. Engagement of different epitopes of the proteoglycan results in distinct forms of actin reorganization. On mAb D120, the cells contain radial actin spikes characteristic of filopodial extension, whereas on mAb N143, the cells contain cortical actin bundles characteristic of lamellipodia. Cells that express NG2 variants lacking the transmembrane and cytoplasmic domains are unable to spread or migrate on NG2 mAb-coated surfaces, indicating that these portions of the molecule are essential for NG2-mediated signal transduction. Cells expressing an NG2 variant lacking the C-terminal half of the cytoplasmic domain can still spread normally on mAbs D120 and N143, suggesting that the membrane-proximal cytoplasmic segment is responsible for this process. In contrast, this variant migrates poorly on mAb D120 and exhibits abnormal arrays of radial actin filaments decorated with fascin during spreading on this mAb. The C-terminal portion of the NG2 cytoplasmic domain, therefore, may be involved in regulating molecular events that are crucial for cell motility.  相似文献   

15.
Collagens V and VI have been previously identified as specific extracellular matrix (ECM) ligands for the NG2 proteoglycan. In order to study the functional consequences of NG2/collagen interactions, we have utilized the GD25 cell line, which does not express the major collagen-binding beta(1) integrin heterodimers. Use of these cells has allowed us to study beta(1) integrin-independent phenomena that are mediated by binding of NG2 to collagens V and VI. Heterologous expression of NG2 in the GD25 line endows these cells with the capability of attaching to surfaces coated with collagens V and VI. The specificity of this effect is emphasized by the failure of NG2-positive GD25 cells to attach to other collagens or to laminin-1. More importantly, NG2-positive GD25 cells spread extensively on collagen VI. beta(1) integrin-independent extension of ruffling lamellipodia demonstrates that engagement of NG2 by the collagen VI substratum triggers signaling events that lead to rearrangement of the actin cytoskeleton. In contrast, even though collagens V and VI each bind to the central segment of the NG2 ectodomain, collagen V engagement of NG2 does not trigger cell spreading. The distinct morphological consequences of NG2/collagen VI and NG2/collagen V interaction indicate that closely-related ECM ligands for NG2 differ in their ability to initiate transmembrane signaling via engagement of the proteoglycan.  相似文献   

16.
Neural progenitor cells that express the NG2 proteoglycan are present in different regions of the adult mammalian brain where they display distinct morphologies and proliferative rates. In the developing postnatal and adult mouse, NG2(+) cells represent a major cell population of the subventricular zone (SVZ). NG2(+) cells divide in the anterior and lateral region of the SVZ, and are stimulated to proliferate and migrate out of the SVZ by focal demyelination of the corpus callosum (CC). Many NG2(+) cells are labeled by GFP-retrovirus injection into the adult SVZ, demonstrating that NG2(+) cells actively proliferate under physiological conditions and after demyelination. Under normal physiological conditions and after focal demyelination, proliferation of NG2(+) cells is significantly attenuated in wa2 mice, which are characterized by reduced signaling of the epidermal growth factor receptor (EGFR). This results in reduced SVZ-to-lesion migration of NG2(+) cells and oligodendrogenesis in the lesion. Expression of vascular endothelial growth factor (VEGF) and EGFR ligands, such as heparin binding-EGF and transforming growth factor alpha, is upregulated in the SVZ after focal demyelination of the CC. EGF-induced oligodendrogenesis and myelin protein expression in wild-type SVZ cells in culture are significantly attenuated in wa2 SVZ cells. Our results demonstrate that the response of NG2(+) cells in the SVZ and their subsequent differentiation in CC after focal demyelination depend on EGFR signaling.  相似文献   

17.
To identify mechanisms that regulate the deposition of the junctional basal lamina during synaptogenesis, immunocytochemical experiments were carried out on cultured nerve and muscle cells derived from Xenopus laevis embryos. In some experiments successive observations were made on individual muscle cells after pulse-labeling with a fluorescent monoclonal antibody specific for a basal lamina proteoglycan. In others, old and new proteoglycan molecules were differentially labeled with antibody conjugated to contrasting fluorochromes. These observations revealed that surface deposits of antibody-labeled proteoglycan remain morphologically stable for several days on developing muscle cells. Over the same period, however, new sites of proteoglycan accumulation formed that contained primarily those antigenic sites recently exposed at the cell surface. When muscle cells became innervated by cholinergic neurites, new proteoglycan accumulations were induced at the developing neuromuscular junctions, and these too were composed almost exclusively of recently deposited antigen. In older muscle cultures, where many cells possessed relatively high background concentrations of antigen over their surfaces, developing neuromuscular junctions initially showed a markedly reduced proteoglycan site-density compared with the adjacent, extrajunctional muscle surface. Much of this perineural region eventually became filled with dense, nerve induced proteoglycan plaques at later stages of synapse development. Motoneurons thus appear to have two, superficially paradoxical effects on muscle basal lamina organization. They first cause the removal of any existing, extrajunctional proteoglycan from the path of cell contact, and then induce the deposition of dense plaques of recently synthesized proteoglycan within the developing junctional basal lamina. This observation suggests that the proteolytic enzyme systems that have already been implicated in tissue remodeling may also contribute to the inductive interaction between nerve and muscle cells during synaptogenesis.  相似文献   

18.
NG2细胞是广泛分布于CNS中表达NG2蛋白多糖的一种胶质细胞,也被称为少突胶质前体细胞(oligodendrocyteprecur—sorcells,oPc)。该细胞具有典型复杂的星形形态和长突起围绕于胞体周围,表达电压门控的K+和Na+通道、GABAA以及AMPA/红藻氨酸受体并接受神经元突触的信号输入。NG2细胞增殖分化是保证神经元轴突髓鞘化的首要前提,NG2的增殖分化不能仅依靠其自身调控,NG2-神经元突触联系可能也是调控NG2细胞增殖分化的信息中转站。伴随NG2细胞增殖分化神经元轴突的髓鞘化也不断形成,这些过程在围生期表现尤为明显;NG2细胞分化为少突胶质细胞后,其功能上具有”专一性”,所以可能存在NG2.神经元突触联系的作用被削弱的现象。因此,在NG2细胞增殖过程中,NG2细胞保持与神经元之间的功能性突触并将其传递给子代NG2细胞;而在NG2细胞分化的过程中,NG2细胞的突触信号输入迅速减少。NG2细胞不但是一种前体细胞,同时也是一种具有独特功能的胶质细胞,在中枢神经系统中发挥重要作用。本综述就NG2细胞在增殖分化过程中其突触信号的变化以及可能的意义进行阐述。  相似文献   

19.
Previous work has demonstrated the ability of the NG2 proteoglycan, a component of microvascular pericytes, to stimulate endothelial cell motility and morphogenesis. This function of NG2 depends on formation of a complex with galectin-3 and alpha3beta1 integrin to stimulate integrin-mediated transmembrane signaling. In addition, the co-expression of galectin-3 and NG2 in A375 melanoma cells suggests that the malignant properties of these cells may be affected by interaction between the two molecules. Here, we extend the theme of co-expression and interaction of NG2 and galectin-3 to human glioma cells. We also establish a molecular basis for the NG2/galectin-3 interaction. The C-terminal carbohydrate recognition domain of galectin-3 is responsible for binding to the NG2 core protein. Within the NG2 extracellular domain, the membrane-proximal D3 segment of the proteoglycan contains the primary binding site for interaction with galectin-3. The interaction between galectin-3 and NG2 is a carbohydrate-dependent one mediated by N-linked rather than O-linked oligosaccharides within the D3 domain of the NG2 core protein. These studies establish a foundation for attempts to reduce the aggressive properties of tumor cells by disrupting the NG2/galectin-3 interaction.  相似文献   

20.
Migration of oligodendrocyte precursors along axons is a necessary prerequisite for myelination, but little is known about underlying mechanisms. NG2 is a large membrane proteoglycan implicated in oligodendrocyte migration. Here we show that a PDZ domain protein termed syntenin-1 interacts with NG2 and that syntenin-1 is necessary for normal rates of migration. The association of syntenin-1 with NG2, identified in a yeast two-hybrid screen, was confirmed by colocalization of both proteins within processes of oligodendroglial precursor cells and by coimmunoprecipitation from cell extracts. Syntenin-1 also colocalizes with NG2 in "co-capping" assays, demonstrating a lateral association of both proteins in live oligodendrocytes. RNA interference-mediated down-regulation of syntenin-1 in glial cells results in a significant reduction of migration in vitro, as does the presence of polyclonal antibody against NG2. Thus syntenin plays a role in the migration of oligodendroglial precursors, and we suggest that NG2-syntenin-1 interactions contribute to this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号