首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 66 毫秒
1.
利用稳定同位素技术和Keeling Plot方法可以有效分割地表蒸散量, 进而加深对陆地生态系统水循环的理解。该研究通过原位连续测定麦田的水汽同位素数据, 评价Keeling Plot方法在分割地表蒸散中的应用, 并揭示华北冬小麦(Triticum aestivum)蒸腾在总蒸散中的比例。实验于2008年3–5月在中国科学院栾城农业生态站进行, 利用国际上先进的H218O、HD16O激光痕量气体分析仪(TDLAS)为基础构建的大气水汽18O/16O和D/H同位素比原位连续观测系统, 同时利用涡度相关技术、真空抽提技术、同位素质谱仪技术, 获取了必要的数据。研究分析了一天中不同时间段的连续的大气水汽δ18O与水汽浓度倒数拟合Keeling Plot曲线的差异和可能的原因。结果显示, 中午时段的拟合结果较好, 这也暗示中午时段蒸腾速率高时最可能满足植物蒸腾的同位素稳定态假设。进一步的分析发现植物蒸腾的同位素稳定态并不总是成立, 尤其是水分胁迫下进入成熟期的小麦, 其蒸腾水汽同位素一般处于非稳定态。利用同位素分割结果显示, 生长盛期麦田94%–99%的蒸散来源于植物蒸腾。  相似文献   

2.
利用稳定同位素技术和Keeling Plot方法可以有效分割地表蒸散量,进而加深对陆地生态系统水循环的理解.该研究通过原位连续测定麦田的水汽同位素数据,评价Keeling Plot方法在分割地表蒸散中的应用,并揭示华北冬小麦(Triticum aes-tivum)蒸腾在总蒸散中的比例.实验于2008年3-5月在中国科学院栾城农业生态站进行,利用国际上先进的H_2~(18)O、HD~(16)O激光痕量气体分析仪(TDLAS)为基础构建的大气水汽~(18)O/~(16)O和D/H同位素比原位连续观测系统,同时利用涡度相关技术、真空抽提技术、同位素质谱仪技术,获取了必要的数据.研究分析了一天中不同时间段的连续的大气水汽δ~(18)O与水汽浓度倒数拟合Keeling Plot曲线的差异和可能的原因.结果显示,中午时段的拟合结果较好,这也暗示中午时段蒸腾速率高时最可能满足植物蒸腾的同位素稳定态假设.进一步的分析发现植物蒸腾的同位素稳定态并不总是成立,尤其是水分胁迫下进入成熟期的小麦,其蒸腾水汽同位素一般处于非稳定态.利用同位素分割结果显示,生长盛期麦田94%-99%的蒸散来源于植物蒸腾.  相似文献   

3.
孙守家  孟平  张劲松  舒健骅  郑宁   《生态学杂志》2015,26(10):3000-3010
采用离轴积分腔输出光谱技术测定夏季和冬季北京市4环路和北京园林科学研究院绿地系统空气中CO2浓度、δ13C和δ18O值,在半小时尺度上分析了其变化特征和差异以及与车流量和气象因子的关联.结果表明: 4环路上车流量较大,夏季和冬季观测期间每日均超过15万辆次,有明显的早晚交通高峰.4环路与绿地系统的空气中CO2浓度呈双峰曲线日变化,δ13C值呈双波谷曲线、δ18O值呈单波谷曲线日变化,夏季二者空气中的CO2浓度、δ13C和δ18O差值远大于冬季.同位素定量区分结果显示,夏季观测期间4环路空气中CO2主要来源于机动车尾气,约占64.9%,而绿地系统空气中CO2主要来源于自养和异养呼吸,约占56.3%,冬季观测期间二者空气中CO2均主要来源于机动车尾气.逐步回归分析表明,在半小时尺度上车流量和太阳辐射对绿地系统与4环路CO2浓度差值产生显著影响,太阳辐射和相对湿度则是影响δ13C和δ18O差值的主要气象因子.绿地系统中的植物在生长季节通过光合作用吸收和消减化石燃料燃烧产生的CO2来维持城市碳氧平衡,在改善城市生态环境方面发挥重要作用.  相似文献   

4.
2011—2014年4—10月在位于我国东部季风区的黄河小浪底库区收集降水样品及相应气象资料,分析该地区大气降水的δD和δ18O季节变化规律及影响因素,建立不同季节大气降水线,揭示该地区不同季节水汽来源差异.结果表明: 降水的δD和δ18O值变化范围较大,具有明显的季节变化,春季降水的δD和δ18O值较高,夏季次之,秋季最低.4—10月及秋季降水δD和δ18O与降水量存在负相关关系,4—10月降水δD与温度呈负相关关系,而季节性降水同位素与温度的相关性不显著.夏季大气水线斜率及降水过量氘(d值)较小,而秋季最大.利用HYSPLIT气团轨迹模型得出夏季水汽主要来自东南及西南海洋性季风输送,春秋季节降水受大陆和海洋性季风共同影响.  相似文献   

5.
Stable carbon isotope composition (δ13C) of dry matter has been widely investigated as a selection tool in cereal breeding programmes. However, reports on the possibilities of using stable oxygen isotope composition (δ18O) as a yield predictor are very scarce and only in the absence of water stress. Indeed, it remains to be tested whether changes in phenology and stomatal conductance in response to water stress overrule the use of either δ13C or δ18O when water is limited. To answer this question, a set of 24 genotypes of bread wheat ( Triticum aestivum ) were assayed in two trials with different levels of deficit irrigation and a third trial under rainfed conditions in a Mediterranean climate (northwest Syria). Grain yield (GY) and phenology (duration from planting to anthesis and from anthesis to maturity) were recorded, and the δ13C and δ18O of grains were analysed to assess their suitability as GY predictors. Both δ13C and δ18O showed higher broad-sense heritabilities ( H 2) than GY. Genotype means of GY across trials were negatively correlated with δ13C, as previously reported, but not with δ18O. Both isotopes were correlated with grain filling duration, whereas δ18O was also strongly affected by crop duration from planting to anthesis. We concluded that δ18O of grains is not a proper physiological trait to breed for suboptimal water conditions, as its variability is almost entirely determined by crop phenology. In contrast, δ13C of grains, despite being also affected by phenology, still provides complementary information associated with GY.  相似文献   

6.
In this paper we describe measurements and modeling of 18O in CO2 and H2O pools and fluxes at a tallgrass prairie site in Oklahoma. We present measurements of the δ18O value of leaf water, depth‐resolved soil water, atmospheric water vapor, and Keeling plot δ18O intercepts for net soil‐surface CO2 and ecosystem CO2 and H2O fluxes during three periods of the 2000 growing season. Daytime discrimination against C18OO, as calculated from measured above‐canopy CO2 and δ18O gradients, is also presented. To interpret the isotope measurements, we applied an integrated land‐surface and isotope model (ISOLSM) that simulates ecosystem H218O and C18OO stocks and fluxes. ISOLSM accurately predicted the measured isotopic composition of ecosystem water pools and the δ18O value of net ecosystem CO2 and H2O fluxes. Simulations indicate that incomplete equilibration between CO2 and H2O within C4 plant leaves can have a substantial impact on ecosystem discrimination. Diurnal variations in the δ18O value of above‐canopy vapor had a small impact on the predicted δ18O value of ecosystem water pools, although sustained differences had a large impact. Diurnal variations in the δ18O value of above‐canopy CO2 substantially affected the predicted ecosystem discrimination. Leaves dominate the ecosystem 18O‐isoflux in CO2 during the growing season, while the soil contribution is relatively small and less variable. However, interpreting daytime measurements of ecosystem C18OO fluxes requires accurate predictions of both soil and leaf 18O‐isofluxes.  相似文献   

7.
Seasonal variation in δ13C and δ18O of cellulose (δ13Cc and δ18Oc) was measured within two annual rings of Pinus radiata growing at three sites in New Zealand. In general, both δ13Cc and δ18Oc increased to a peak over summer. The three sites differed markedly in annual water balance, and these differences were reflected in δ13Cc and δ18Oc. Average δ13Cc and δ18Oc from each site were positively related, so that the driest site had the most enriched cellulose. δ13Cc and δ18Oc were also related within each site, although both the slope and the closeness of fit of the relationship varied between sites. Supporting the theory, the site with the lowest average relative humidity also had the greatest change in δ18Oc‰ change in δ13Cc. Specific climatic events, such as drought or high rainfall, were recorded as a peak or a trough in enrichment, respectively. These results suggest that seasonal and between‐site variation in δ13Cc and δ18Oc are driven by the interaction between variation in climatic conditions and soil water availability, and plant response to this variation.  相似文献   

8.
9.
Two direct but independent approaches were developed to identify the average δ18O value of the water fraction in the chloroplasts of transpiring leaves. In the first approach, we used the δ18O value of CO2 in isotopic equilibrium with leaf water to reconstruct the δ18O value of water in the chloroplasts. This method was based on the idea that the enzyme carbonic anhydrase facilitates isotopic equilibrium between CO2 and H2O predominantly in the chloroplasts, at a rate that is several orders of magnitude faster than the non-catalysed exchange in other leaf water fractions. In the second approach, we measured the δ18O value of O2 from photosynthetic water oxidation in the chloroplasts of intact leaves. Since O2 is produced from chloroplast water irreversibly and without discrimination, the δ18O value of the O2 should be identical to that of chloroplast water. In intact, transpiring leaves of sunflower (Helianthus annuus cv. giant mammoth) under the experimental conditions used, the average δ18O value of chloroplasts water was displaced by 3—10 % (depending on relative humidity and atmospheric composition) below the value predicted by the conventional Craig & Gordon model. Furthermore, this δ18O value was always lower than the δ18O value that was measured for bulk leaf water. Our results have implications for a variety of environmental studies since it is the δ18O value of water in the chloroplasts that is the relevant quantity in considering terrestrial plants influence on the δ18O values of atmospheric CO2 and O2, as well as in influencing the δ18O of plant organic matter.  相似文献   

10.
We measured the carbon and oxygen isotopic composition of stem cellulose of Pinus sylvestris, Picea abies, Fagus sylvatica and Fraxinus excelsior. Several sites along a transect of a small valley in Switzerland were selected which differ in soil moisture conditions. At every site, six trees per species were sampled, and a sample representing a mean value for the period from 1940 to 1990 was analysed. For all species, the mean site δ13C and δ18O of stem cellulose are related to the soil moisture availability, whereby higher isotope ratios are found at drier sites. This result is consistent with isotope fractionation models when assuming enhanced stomatal resistance (thus higher δ13C of incorporated carbon) and increased oxygen isotope enrichment in the leaf water (thus higher δ18O) at the dry sites. δ18 O-δ13C plots reveal a linear relationship between the carbon and oxygen isotopes in cellulose. To interpret this relationship we developed an equation which combines the above-mentioned fractionation models. An important new parameter is the degree to which the leaf water enrichment is reflected in the stem cellulose. In the combined model the slope of the δ18O-δ13C plot is related to the sensitivity of the pi/pa of a plant to changing relative humidity.  相似文献   

11.
研究了四川盆地丘陵区连续16年垄(宽垄)作稻田土壤稳定碳库腐殖质组分的稳定碳同位素(δ13C)分布特征.结果表明: 稻田土壤有机碳含量为宽垄作>垄作>水旱轮作.腐殖质碳以胡敏素为主,占土壤碳含量的21%~30%,提取碳以胡敏酸为主,分别占土壤有机碳和腐殖质的17%~21%和38%~65%.土壤有机碳的δ13C值介于-27.9‰~-25.6‰,20~40 cm和0~5 cm土壤有机碳δ13C值之差约为1.9‰.土壤胡敏酸δ13C值比土壤有机碳低1‰~2‰,更接近于油菜和水稻秸秆及根系的δ13C值.土壤富里酸δ13C值分别较土壤有机碳和胡敏酸高2‰和4‰.耕作层和犁底层胡敏素δ13C值分别介于-23.7‰~-24.9‰和-22.6‰~-24.2‰,δ13C值的变化反映了耕层中腐殖质的新老混合现象.各有机组分δ13C值递减顺序为:胡敏素>富里酸>土壤有机碳>稻草(油菜)残体>胡敏酸.长期水稻种植有利于增加土壤有机碳含量,同时,耕作方式影响土壤腐殖质δ13C在耕作层和犁底层中的分布格局.  相似文献   

12.
13.
对大兴安岭北部两株樟子松(Pinus sylvestris var.mongolica)树轮样品的年内稳定碳同位素比率(δ13C)进行测定,结果表明:樟子松树轮年内δ13C值在不同生长阶段总体表现出每年生长季中期最高、早期次之、晚期最低的变化特征.δ13C的年内变化趋势在幼龄期至速生期变化剧烈,成熟期至衰老期相对平缓.从幼龄期至衰老期的整个生长阶段,同时期年内δ13C的变动幅度基本为晚材大于早材.幼龄期年内晚材的δ13C一直明显高于早材,而成熟期年内早晚材δ13C的差别逐渐减小,至衰老期年内晚材δ13C已低于早材且无显著差别.树轮δ13C的年内变化主要体现在生长季中后期,即早晚材之间的过渡段至晚材.年内不同时段的d13C序列与同时段的宽度去除生长趋势序列(去趋势序列)之间的相关性随生长季节的推移而逐渐降低.当年早材宽度与前一年晚材宽度显著正相关,当年早材δ13C序列与前一年晚材宽度和当年早材宽度的去趋势合并序列呈现较显著的负相关性,与前一年晚材δ13C序列或宽度去趋势序列之间均未表现出显著的相关性.分析结果表明:早材的形成很可能来源于前一年光合作用的产物,在利用树轮年内不同材质宽度或δ13C序列进行气候环境重建时需要考虑这一点.年内早材、过渡段和晚材三个时段的δ13C分别对应于4月下旬至6月中旬土壤湿度较大、温度上升较快的时期,6月下旬至7月中旬降水增加、温度达到最高而相对湿度降低的时期,以及7月下旬至9月中旬降水增加、温度下降而相对湿度较大的时期.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号