首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
现行抗反转录病毒治疗药物的联合应用可有效抑制艾滋病进程并显著延长患者寿命,但由于人类免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)潜伏库的存在,艾滋病迄今尚无法治愈。近年发现抗HIV广谱中和抗体能有效降低患者体内病毒载量并延缓疾病进程,为研发艾滋病疫苗和治愈策略带来了曙光,尤其是序贯免疫策略的使用极大推进了广谱中和抗体的开发和应用进程。2018年,美国食品药品管理局(Food and Drug Administration,FDA)批准了第1个临床应用的广谱中性单克隆和抗体,无疑为抗HIV单克隆抗体药物的研发注入了一支强心剂。本文围绕近年来抗HIV广谱中和抗体的研究进展进行综述,探讨未来广谱中和抗体研发面临的挑战。  相似文献   

2.
Repeated immunizations of goats, horses, or chimpanzees with envelope glycoprotein gp120 isolated from human immunodeficiency virus type 1 (HIV-1) resulted in type-specific neutralizing-antibody responses, which began to decay approximately 20 days following the administration of antigen. This was true repeatedly for serum samples from animals hyperimmunized with gp120s from either the HTLV-IIIB (IIIB) or the envelope-divergent HTLV-IIIRF (RF) HIV-1 isolates. Animals previously immunized with the IIIB gp120 were then inoculated with purified RF gp120. The first response in these animals was an anamnestic resurgence of neutralizing antibody to IIIB without detectable neutralizing antibody for RF. However, with later RF gp120 boosts, the IIIB neutralizing-antibody titers fell and an RF type-specific neutralizing-antibody response developed. When assessed with other HIV-1 variants, no group-specific neutralizing antibody was seen in any of the vaccination protocols evaluated. These results will pose real obstacles in the development of an effective vaccine for HIV.  相似文献   

3.
We assessed differences in the character and specificity of autologous neutralizing antibodies (ANAbs) against individual viral variants of the quasispecies in a cohort of drug-naïve subjects with long-term controlled human immunodeficiency virus type 1 (HIV-1) infection and moderate levels of broad heterologous neutralizing antibodies (HNAb). Functional plasma virus showed continuous env evolution despite a short time frame and low levels of viral replication. Neutralization-sensitive variants dominated in subjects with intermittent viral blips, while neutralization-resistant variants predominated in elite controllers. By sequence analysis of this panel of autologous variants with various sensitivities to neutralization, we identified more than 30 residues in envelope proteins (Env) associated with resistance or sensitivity to ANAbs. The appearance of new sensitive variants is consistent with a model of continuous selection and turnover. Strong ANAb responses directed against autologous Env variants are present in long-term chronically infected individuals, suggesting a role for these responses in contributing to the durable control of HIV replication.Antibodies capable of neutralizing a subject''s own virus, called autologous neutralizing antibodies (ANAbs), have been the subject of recent studies redefining the timing and character of this response. ANAbs develop early in essentially all seropositive subjects and increase in titer during the first few months and years of infection (15, 30). Previously published data were obtained using an assay that measures ANAbs against the complete quasispecies without an analysis of the individual envelope protein (Env) sequences to which these ANAb responses were directed (10). The contemporaneous virus pool was poorly neutralized, leading to an assumption that contemporaneous ANAbs are ineffective in controlling viremia. In chronic infection, ANAbs generally have been difficult to detect (3, 29, 31, 40), but there is ample evidence for selection by NAb and resulting virus env evolution in the host (12, 30, 38). The titers of ANAbs measured against clinical or autologous isolates cultured in peripheral blood mononuclear cells typically have been low in chronic infection (31, 40), while other studies indicated the presence of strong ANAbs (2). Although ANAbs may be ineffective in subjects with high virus loads due to the continuous generation of escape variants, their role in maintaining low viral loads in human immunodeficiency virus (HIV) controllers is not known.NAbs that recognize heterologous isolates to which the subject has never been exposed, called heterologous NAbs (HNAbs), are found later in infection, and not all subjects develop this broadening of the response (5). In studies that utilized easy-to-neutralize laboratory or primary viruses, titers of HNAbs can be high (5, 6, 26, 29). Early work had shown that polyclonal HNAbs in HIV-infected subjects are directed to conserved conformational determinants on gp120 (32), including the CD4-binding site (CD4bs) (22). Several human neutralizing monoclonal antibodies with broad activity also are directed to conserved conformational determinants on Env proteins, such as the CD4bs (4) and V3 (17). However, the mechanisms that lead to the development of broad HNAbs are unknown. Their development likely is dependent upon the specific autologous Env proteins to which the subject is exposed, and these proteins are variants of the original infection in these subjects, except for cases of superinfection. Thus, we reasoned that a detailed analysis of the neutralization of individual autologous variants in subjects with broad responses and viral control could be informative.The purpose of this study was to examine the autologous neutralizing responses against autologous viral variants in the plasma of HIV-positive subjects that were controlling infection for many years. These subjects have moderate HNAbs against the quasispecies of other subjects (27). We compared longitudinal samples from five chronically infected, antiretroviral treatment-naive adults late in infection. Despite the short time frame between the sample time points, the amount of env variation was surprisingly high, indicating continuous viral evolution in controllers; contemporaneous ANAbs were present and maintained in all except one elite controller. We cloned individual env gp160 plasma variants and analyzed sequence changes related to the autologous neutralization sensitivity or resistance. We systematically examined the ANAb response directed to individual variants using contemporaneous and noncontemporaneous plasma samples and observed patterns that have not been previously reported. Mutations that were significantly associated with sensitivity or resistance to ANAbs were found on parts of the envelope that are exposed and thus may be accessible to antibodies, consistently with a role in escape and containment by NAbs.  相似文献   

4.
Several reports have described the existence of synergy between neutralizing monoclonal antibodies (MAbs) against human immunodeficiency virus type 1 (HIV-1). Synergy between human MAbs b12, 2G12, 2F5, and 4E10 in neutralization of primary isolates is of particular interest. Neutralization synergy of these MAbs, however, has not been studied extensively, and the mechanism of synergy remains unclear. We investigated neutralization synergy among this human antibody set by using the classical approach of titrating antibodies mixed at a fixed ratio as well as by an alternative, variable ratio approach in which the neutralization curve of one MAb is assessed in the presence and absence of a fixed, weakly neutralizing concentration of a second antibody. The advantage of this second approach is that it does not require mathematical analysis to establish synergy. No neutralization enhancement of any of the MAb combinations tested was detected for the T-cell-line-adapted molecular HIV-1 clone HxB2 using both assay formats. Studies of primary isolates (89.6, SF162, and JR-CSF) showed neutralization synergy which was relatively weak, with a maximum of two- to fourfold enhancement between antibody pairs, thereby increasing neutralization titers about 10-fold in triple and quadruple antibody combinations. Analysis of b12 and 2G12 binding to oligomeric envelope glycoprotein by using flow cytometry failed to demonstrate cooperativity in binding between these two antibodies. The mechanism by which these antibodies synergize is, therefore, not yet understood. The results lend some support to the notion that an HIV-1 vaccine that elicits moderate neutralizing antibodies to multiple epitopes may be more effective than hereto supposed, although considerable caution in extrapolating to a vaccine situation is required.  相似文献   

5.
Expression vectors based on DNA or plus-stranded RNA viruses are being developed as vaccine carriers directed against various pathogens. Less is known about the use of negative-stranded RNA viruses, whose genomes have been refractory to direct genetic manipulation. Using a recently described reverse genetics method, we investigated whether influenza virus is able to present antigenic structures from other infectious agents. We engineered a chimeric influenza virus which expresses a 12-amino-acid peptide derived from the V3 loop of gp120 of human immunodeficiency virus type 1 (HIV-1) MN. This peptide was inserted into the loop of antigenic site B of the influenza A/WSN/33 virus hemagglutinin (HA). The resulting chimeric virus was recognized by specific anti-V3 peptide antibodies and a human anti-gp120 monoclonal antibody in both hemagglutination inhibition and neutralization assays. Mice immunized with the chimeric influenza virus produced anti-HIV antibodies which were able to bind to synthetic V3 peptide, to precipitate gp120, and to neutralize MN virus in human T-cell culture system. In addition, the chimeric virus was also capable of inducing cytotoxic T cells which specifically recognize the HIV sequence. These results suggest that influenza virus can be used as an expression vector for inducing both B- and T-cell-mediated immunity against other infectious agents.  相似文献   

6.
A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components.  相似文献   

7.
The human immunodeficiency virus Tat regulatory protein is essential for virus replication and pathogenesis. From human peripheral blood mononuclear cells of three Tat toxoid-immunized volunteers, we isolated five Tat-specific human monoclonal antibodies (HMAbs): two full-length immunoglobulin G (IgG) antibodies and three single-chain fragment-variable (scFv) antibodies. The two IgGs were mapped to distinct epitopes within the basic region of Tat, and the three scFvs were mapped to the N-terminal domain of Tat. The three scFvs were highly reactive with recombinant Tat in Western blotting or immunoprecipitation, but results were in contrast to those for the two IgGs, which are sensitive to a particular folding of the protein. In transactivation assays, scFvs were able to inhibit both active recombinant Tat and native Tat secreted by a transfected CEM cell line while IgGs neutralized only native Tat. These HMAbs were able to reduce viral p24 production in human immunodeficiency virus type 1 strain IIIB chronically infected cell lines in a dose-dependent manner.  相似文献   

8.
Human immunodeficiency virus type 1 escape from RNA interference   总被引:20,自引:0,他引:20       下载免费PDF全文
Boden D  Pusch O  Lee F  Tucker L  Ramratnam B 《Journal of virology》2003,77(21):11531-11535
Sequence-specific degradation of mRNA by short interfering RNA (siRNA) allows the selective inhibition of viral proteins that are critical for human immunodeficiency virus type 1 (HIV-1) replication. The aim of this study was to characterize the potency and durability of virus-specific RNA interference (RNAi) in cell lines that stably express short hairpin RNA (shRNA) targeting the HIV-1 transactivator protein gene tat. We found that the antiviral activity of tat shRNA was abolished due to the emergence of viral quasispecies harboring a point mutation in the shRNA target region. Our results suggest that, in order for RNAi to durably suppress HIV-1 replication, it may be necessary to target highly conserved regions of the viral genome. Alternatively, similar to present antiviral drug therapy paradigms, DNA constructs expressing multiple siRNAs need to be developed that target different regions of the viral genome, thereby reducing the probability of generating escape mutants.  相似文献   

9.
10.
Short interfering RNAs (siRNAs) targeting viral or cellular genes can efficiently inhibit human immunodeficiency virus type 1 (HIV-1) replication. Nevertheless, the emergence of mutations in the gene being targeted could lead to the rapid escape from the siRNA. Here, we simulate viral escape by systematically introducing single-nucleotide substitutions in all 19 HIV-1 residues targeted by an effective siRNA. We found that all mutant viruses that were tested replicated better in the presence of the siRNA than in the presence of the wild-type virus. The antiviral activity of the siRNA was completely abolished by single substitutions in 10 (positions 4 to 11, 14, and 15) out of 16 positions tested (substitution at 3 of the 19 positions explored rendered nonviable viruses). With the exception of the substitution observed at position 12, substitutions at either the 5' end or the 3' end (positions 1 to 3, 16, and 18) were better tolerated by the RNA interference machinery and only in part affected siRNA inhibition. Our results show that optimal HIV-1 gene silencing by siRNA requires a complete homology within most of the target sequence and that substitutions at only a few positions at the 5' and 3' ends are partially tolerated.  相似文献   

11.
Recombinant viral vectors are useful tools for AIDS vaccine development. However, expression of HIV-1 envelope genes using viral vectors has not been successful in the induction of potent neutralizing antibodies in vivo. We took advantage of the strong immunogenicity of vesicular stomatitis virus (VSV)-based vector and expressed HIV-1 HXB2 gp120 gene in the recombinant VSV. Our results showed that HIV-1 gp120 protein expressed by the recombinant VSV retained the native conformation of the protein to some degree and was recognized by two well-characterized broad anti-HIV-1 neutralizing monoclonal antibodies b12, 2G12. We further showed that only one time intranasal immunization with the recombinant VSV led to production of anti-HIV-1 anti-sera in mice. In addition, we found that the anti-sera had the ability to neutralize not only HXB2 envelope-pseudotyped HIV-1 viruses but also HIV-1 pseudotyped viruses with JRFL envelopes. These results suggest that HIV-1 gp120 expressed by the recombinant VSV, in combination with the route of intranasal administration, is an effective strategy to evaluate the immunogenicity of HIV-1 envelope protein and its variants in mice.  相似文献   

12.
Perinatal human immunodeficiency virus type 1 (HIV-1) transmission is characterized by acquisition of a homogeneous viral quasispecies, yet the selective factors responsible for this genetic bottleneck are unclear. We examined the role of maternal autologous neutralizing antibody (aNAB) in selective transmission of HIV-1 escape variants to infants. Maternal sera from 38 infected mothers at the time of delivery were assayed for autologous neutralizing antibody activity against maternal time-of-delivery HIV-1 isolates in vitro. Maternal sera were also tested for cross-neutralization of infected-infant-first-positive-time-point viral isolates. Heteroduplex and DNA sequence analyses were then performed to identify the initial infecting virus as a neutralization-sensitive or escape HIV-1 variant. In utero transmitters (n = 14) were significantly less likely to have aNAB to their own HIV-1 strains at delivery than nontransmitting mothers (n = 17, 14.3% versus 76.5%, P = 0.003). Cross-neutralization assays of infected-infant-first-positive-time-point HIV-1 isolates indicated that while 14/21 HIV-1-infected infant first positive time point isolates were resistant to their own mother's aNAB, no infant isolate was inherently resistant to antibody neutralization by all sera tested. Furthermore, both heteroduplex (n = 21) and phylogenetic (n = 9) analyses showed that selective perinatal transmission and/or outgrowth of maternal autologous neutralization escape HIV-1 variants occurs in utero and intrapartum. These data indicate that maternal autologous neutralizing antibody can exert powerful protective and selective effects in perinatal HIV-1 transmission and therefore has important implications for vaccine development.  相似文献   

13.
The characterization of the cross-reactive, or heterologous, neutralizing antibody responses developed during human immunodeficiency virus type 1 (HIV-1) infection and the identification of factors associated with their generation are relevant to the development of an HIV vaccine. We report that in healthy HIV-positive, antiretroviral-naïve subjects, the breadth of plasma heterologous neutralizing antibody responses correlates with the time since infection, plasma viremia levels, and the binding avidity of anti-Env antibodies. Anti-CD4-binding site antibodies are responsible for the exceptionally broad cross-neutralizing antibody responses recorded only in rare plasma samples. However, in most cases examined, antibodies to the variable regions and to the CD4-binding site of Env modestly contributed in defining the overall breadth of these responses. Plasmas with broad cross-neutralizing antibody responses were identified that targeted the gp120 subunit, but their precise epitopes mapped outside the variable regions and the CD4-binding site. Finally, although several plasmas were identified with cross-neutralizing antibody responses that were not directed against gp120, only one plasma with a moderate breadth of heterologous neutralizing antibody responses contained cross-reactive neutralizing antibodies against the 4E10 epitope, which is within the gp41 transmembrane subunit. Overall, our study indicates that more than one pathway leads to the development of broad cross-reactive neutralizing antibodies during HIV infection and that the virus continuously escapes their action.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) entry requires conformational changes in the transmembrane subunit (gp41) of the envelope glycoprotein (Env) involving transient fusion intermediates that contain exposed coiled-coil (prehairpin) and six-helix bundle structures. We investigated the HIV-1 entry mechanism and the potential of antibodies targeting fusion intermediates to block Env-mediated membrane fusion. Suboptimal temperature (31.5 degrees C) was used to prolong fusion intermediates as monitored by confocal microscopy. After transfer to 37 degrees C, these fusion intermediates progressed to syncytium formation with enhanced kinetics compared with effector-target (E/T) cell mixtures that were incubated only at 37 degrees C. gp41 peptides DP-178, DP-107, and IQN17 blocked fusion more efficiently (5- to 10-fold-lower 50% inhibitory dose values) when added to E/T cells at the suboptimal temperature prior to transfer to 37 degrees C. Rabbit antibodies against peptides modeling the N-heptad repeat or the six-helix bundle of gp41 blocked fusion and viral infection at 37 degrees C only if preincubated with E/T cells at the suboptimal temperature. Similar fusion inhibition was observed with human six-helix bundle-specific monoclonal antibodies. Our data demonstrate that antibodies targeting gp41 fusion intermediates are able to bind to gp41 and arrest fusion. They also indicate that six-helix bundles can form prior to fusion and that the lag time before fusion occurs may include the time needed to accumulate preformed six-helix bundles at the fusion site.  相似文献   

15.
The ability of the broadly neutralizing human immunodeficiency virus type 1 (HIV-1) specific human monoclonal antibodies (MAbs) b12, 2G12, 2F5, and 4E10 to neutralize recently transmitted viruses has not yet been explored in detail. We investigated the neutralization sensitivity of subtype B HIV-1 variants obtained from four primary HIV infection cases and six transmission couples (four homosexual and two parenteral) to these MAbs. Sexually transmitted HIV-1 variants isolated within the first 2 months after seroconversion were generally sensitive to 2F5, moderately resistant to 4E10 and b12, and initially resistant but later more sensitive to 2G12 neutralization. In the four homosexual transmission couples, MAb neutralization sensitivity of HIV in recipients did not correlate with the MAb neutralization sensitivity of HIV from their source partners, whereas the neutralization sensitivity of donor and recipient viruses involved in parenteral transmission was more similar. For a fraction (11%) of the HIV-1 variants analyzed here, neutralization by 2G12 could not be predicted by the presence of N-linked glycosylation sites previously described to be involved in 2G12 binding. Resistance to 2F5 and 4E10 neutralization did also not correlate with mutations in the respective core epitopes. Overall, we observed that the neutralization resistance of recently transmitted subtype B HIV-1 variants was relatively high. Although 8 of 10 patients had viruses that were sensitive to neutralization by at least one of the four broadly neutralizing antibodies studied, 4 of 10 patients harbored at least one virus variant that seemed resistant to all four antibodies. Our results suggest that vaccine antigens that only elicit antibodies equivalent to b12, 2G12, 2F5, and 4E10 may not be sufficient to protect against all contemporary HIV-1 variants and that additional cross-neutralizing specificities need to be sought.  相似文献   

16.
Attempts to elicit broadly neutralizing antibody responses by human immunodeficiency virus type 1 (HIV-1) vaccine antigens have been met with limited success. To better understand the requirements for cross-neutralization of HIV-1, we have characterized the neutralizing antibody specificities present in the sera of three asymptomatic individuals exhibiting broad neutralization. Two individuals were infected with clade B viruses and the third with a clade A virus. The broadly neutralizing activity could be exclusively assigned to the protein A-reactive immunoglobulin G (IgG) fraction of all three donor sera. Neutralization inhibition assays performed with a panel of linear peptides corresponding to the third hypervariable (V3) loop of gp120 failed to inhibit serum neutralization of a panel of HIV-1 viruses. The sera also failed to neutralize chimeric simian immunodeficiency virus (SIV) and HIV-2 viruses displaying highly conserved gp41-neutralizing epitopes, suggesting that antibodies directed against these epitopes likely do not account for the broad neutralizing activity observed. Polyclonal IgG was fractionated on recombinant monomeric clade B gp120, and the neutralization capacities of the gp120-depleted samples were compared to that of the original polyclonal IgG. We found that the gp120-binding antibody population mediated neutralization of some isolates, but not all. Overall, the data suggest that broad neutralization results from more than one specificity in the sera but that the number of these specificities is likely small. The most likely epitope recognized by the monomeric gp120 binding neutralizing fraction is the CD4 binding site, although other epitopes, such as the glycan shield, cannot be excluded.  相似文献   

17.
Human anti-human leukocyte antigen (HLA) antibodies were assessed for neutralizing activity against human immunodeficiency virus type 1 (HIV-1) carrying HLA alleles with matching specificity. Multiparous women carrying anti-HLA antibodies were identified. Plasma samples from those women were confirmed as having antibodies that specifically bound to HLA proteins expressed on the peripheral blood mononuclear cells (PBMCs) of their husbands. A primary HIV-1 isolate was cultured in the husband's PBMCs so that the virus carried matching HLA alleles. To determine the HIV-1-neutralizing activity of anti-HLA antibodies, the infectivity of the virus for GHOST cells (which express green fluorescent protein after HIV infection) was investigated in the presence of a plasma sample positive for the respective anti-HLA antibody. A neutralization assay was also performed using purified immunoglobulin G (IgG) from two plasma samples, and two plasma samples were investigated in the presence of complement. The prerequisite for anti-HLA antibody-mediated neutralization is incorporation of HLA proteins by HIV-1. Therefore, the extent of incorporation of HLA proteins by the primary HIV-1 isolate was estimated. The ratios of HLA class I protein to HIV-1 capsid (p24) protein cultured in the PBMCs of two healthy individuals were 0.017 and 0.054. These ratios suggested that the HIV-1 strain used in the assay incorporated more HLA proteins than gp160 trimers. Anti-HLA antibody-positive plasma was found to contain antibodies that specifically reacted to HIV-1 carrying cognate HLA alleles. However, incubation of HIV-1 with anti-HLA antibody- positive plasma or purified IgG did not show a reduction in viral infectivity. HIV-1-neutralizing activity was also not detected in the presence of complement. This study shows that HIV-1 primary isolates cultured in PBMCs contain significant amounts of HLA proteins. However, the binding of antibodies to those HLA proteins does not mediate a reduction in viral infectivity.  相似文献   

18.
The protection of individuals from human immunodeficiency virus type 1 (HIV-1) infection with an envelope subunit derived from a single isolate will require the presentation of conserved epitopes in gp120. The objective of the studies presented here was to test whether a native recombinant gp120 (rgp120) immunogen would elicit responses to conserved neutralization epitopes that are not present in a denatured recombinant gp120 antigen from the same virus isolate. In a large study of 51 baboons, we have generated heterologous neutralizing activity with native, glycosylated rgp120SF2 but not with denatured, nonglycosylated env 2-3SF2. After repeated exposure to rgp120SF2 formulated with one of several adjuvants, virus isolates from the United States, the Caribbean, and Africa were neutralized. The timing of the immunization regimen and the choice of adjuvant affected the virus neutralization titers both quantitatively and qualitatively. These results suggest that vaccination with native, glycosylated rgp120 from a single virus isolate, HIV-SF2, may elicit a protective immune response effective against geographically and sequentially distinct HIV-1 isolates.  相似文献   

19.
The ability of antibodies to the V3 region and the CD4-binding domain (CD4bd) of human immunodeficiency virus type 1 (HIV-1) to act in synergy to neutralize HIV has been demonstrated previously. However, synergy between antibodies to other HIV-1 epitopes has not been studied. We have used 21 combinations of human monoclonal antibodies (MAbs) directed against different epitopes of the gp120 and gp41 proteins of HIV-1 to evaluate their ability to act in synergy to neutralize HIV-1. Combinations of anti-V3 and anti-CD4bd antibodies, anti-V3 and anti-gp120 C-terminus antibodies, anti-CD4bd and anti-C-terminus antibodies, anti-V3 and anti-gp41 antibodies, and anti-CD4bd and anti-gp41 antibodies were tested. Our results show that some, but not all anti-V3 antibodies can act in synergy with anti-CD4bd antibodies. In addition, for the first time, antibodies to the C-terminus region have been found to act in synergy with the anti-CD4bd antibodies. Various anti-CD4bd MAbs also act in synergy when used together. The use of such cocktails of human MAbs for passive immunization against HIV-1 may prove to be important for therapy in postexposure settings and for prevention of maternal-fetal transmission of the virus. The results also provide information on the types of antibodies that should be elicited by an effective vaccine.  相似文献   

20.
Vpr, one of the accessory molecules of HIV-1, has been demonstrated to arrest the cell cycle at the G2 phase. This Vpr-mediated cell cycle arrest is implicated to have an important role in the viral life cycle. In the present study, we quantitate the extent of Vpr-mediated cell cycle arrest with the use of a bicistronic vector consisting of a vpr gene and a green fluorescence protein sequence. Using this system, we examined the effect of several Vprs on cell cycle progression and growth of cells from different species quantitatively. We found that Vpr from the T-cell line-adapted HIV-1SF2 strain (Vpr2) could not significantly induce G2 arrest in HeLa cells but was able to induce it in 293T cells. However, strong inhibition of cell proliferation in HeLa cells as well as in 293T cells was observed by Vpr2. This ability of Vpr2 to inhibit cell proliferation without G2 arrest was also observed when expressed in monkey cell line. Analyses of chimeric Vprs revealed that this species-non-specific growth inhibitory activity of Vpr was not mediated solely by the C-terminal region of Vpr. These results indicated that the growth inhibitory activity of Vpr is independent of its G2 arresting activity. In addition, the species-non-specific nature of this activity suggests that Vpr has a novel mechanism to retard cell proliferation by influencing basic cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号