首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S A Stopera  M Ray 《Cytobios》1989,60(241):103-109
New information is revealed concerning the frequency of expression and distribution of aphidicolin-induced fragile sites in eight leukaemic patients, namely, four chronic myeloid leukaemic patients (CML), three acute lymphocytic leukaemic (ALL) patients, and one acute myeloid leukaemic (AML) patient. The cytogenetic data demonstrate a statistically significant (p less than 10(-6] increase in the frequency of aphidicolin-induced fragile sites in seven of the eight leukaemic patients compared with healthy age-matched and sex-matched controls. The chromosomal band locations of the aphidicolin-induced fragile sites from 400 metaphase spreads of these leukaemic patients reveal a nonrandom distribution in the karyotype. Some aphidicolin-induced fragile sites in these leukaemic patients were located at chromosome bands known to be induced specifically by folic acid, distamycin A, bromodeoxyuridine or azacytidine. The cross-induction of fragile sites in the leukaemic patients may be indicative of shared molecular homology in the sequence composition of nonrandom chromosomal DNA.  相似文献   

2.
Schizophrenia is a common and complex mental disorder. Cytogenetic and molecular studies have shown that genetic factors play an important role in the etiology of schizophrenia. As a preliminary step in the search for chromosomal location of a susceptible gene predisposing to schizophrenia, cytogenetic screening of patients might be useful. Therefore, this report is aimed at studying the relationship between chromosomal fragile sites (FS) (gaps, breaks, triradial figures, and several rearrangements) and the etiology of schizophrenia. Because of this, we compared the frequencies of folate-sensitive FS from schizophrenic patients and normal individuals in short-term whole-blood cultures. The rate of FS expression in the patients was considerably higher than in the controls. We determined 15 common FS (cFS) (1q21, 1q32, 2q21, 2q31, 3p14, 4q31, 5q31, 6q21, 6q26, 7q22, 7q32, 10q22, 13q32, Xp22, and Xq22), six rare FS (rFS) (6p21, 8q22, 11q23, 12q24, 16q22, and Xq26), and two previously unknown FS (3p25 and 5q22). Among these expressed FS, there was a significantly higher frequency of 12 FS at 2q31, 3p25, 3p14, 5q31, 6q21, 7q22, 7q32, 10q22, 11q23, 12q24, Xq22, and Xq26 in patient group than in controls by x 2-test (P between 0.0001 to 0.036). Sites 3p14, 5q31, and 7q22 were also the most frequently observed cFS. Males exhibited twice as many FS as females, but no age effects were observed. The potential relationship between increased FS frequency and the occurrence of schizophrenia in these patients is discussed. The text was submitted by the authors in English.  相似文献   

3.
Viral integration,fragile sites,and proto-oncogenes in human neoplasia   总被引:7,自引:0,他引:7  
Summary To evaluate the trend of viral integration in the human genome, chromosomal localization of five DNA-containing viruses compiled from literature data was compared to the location of fragile sites and protooncogenes. A total of 35 regionally mapped viral integration sites from tumors and transformed cells were distributed over 19 chromosomes. Of the 35 integration sites 23 (66%) were at the bands of fragile sites, and 7 were one band away (20%). This statistically defines the correlation as highly significant (P = 0.0000183, Fisher's F-test). Five integration sites did not correspond to the location of a fragile site. Thirteen integration sites and proto-oncogenes mapped at the same bands (37%), 6. (17%) were one band apart, and at 16 integration sites (46%) no proto-oncogenes were localized (P = 0.00491). Eighteen viral integration sites, fragile sites, and protooncogenes (51%) were localized at the same bands or one band distant. This clustering of viral integration sites, fragile sites, and proto-oncogenes is statistically highly significant (P = 0.0000118), and indicates nonrandom viral integration in the human genome.  相似文献   

4.
Summary A high concordance has been reported between fragile sites and breakpoints involved in chromosomal rearrangements in cancer. A prospective study on the role of fragile sites in the etiology of childhood acute lymphocytic leukemia (ALL), with appropriate comparisons to results obtained from normal controls, analyzed fluorodeoxyuridine-, aphidicolin-, and caffeine-induced fragile sites in the peripheral blood of seven ALL patients (three with cytogenetically normal karyotype and four with pseudodiploid karyotype) and eight normal controls. While extensive variations in the number and distribution of fragile sites was observed within each group, there was no significant difference in the mean total fragile sites and mean fragile sites per cell between the two groups (P>0.05) in all three treatments. Similarly, within the ALL patients, the two karyotypic groups did not exhibit any significant difference in fragility (P>0.05).  相似文献   

5.
Summary Expression of distamycin A-inducible rare fragile sites by AT-specific DNA-ligands was examined in lymphoblastoid cell lines derived from heterozygous carriers for the fra(8)(q24), fra(16)(pl2), and fra(16)(q22) sites. The sensitivity of fragile site expression to the inducers was different at these fragile sites. The expression of fra(8)(q24) was induced markedly by Hoechst 33258, but not by distamycin A or berenil. An increased expression of fra(16)(p12) was found following treatment with Hoechst 33258 or berenil, but not with distamycin A. At fra(16)(q22), distamycin A markedly induced the fragile site, but Hoechst 33258 and berenil did not. Since their response to the different inducers was similar to that found in cultured lymphocytes, lymphoblastoid cell lines appear to retain their inherent properties. Although BrdUrd alone did nto induce any fragile sites, concomitant treatment with BrdUrd plus the inducer was synergistically effective in inducing all the fragile sites. An increased frequency of sister chromatid exchanges was observed at fra(16)(p12) following simultaneous treatment with BrdUrd and berenil, mainly when the site was expressed as an isochromatid gap. Thus, the induced fra (16)(pl2) site is a hot spot for the formation of sister chromatid exchanges, as found in other reported fragile sites.  相似文献   

6.
Schizophrenia is a common and complex mental disorder. Cytogenetic and molecular studies have shown that genetic factors play an important role in the etiology of schizophrenia. As a preliminary step in the search for chromosomal location of a susceptible gene predisposing to schizophrenia, cytogenetic screening patients might be useful. Therefore, this report is aimed at studying the relationship between chromosomal fragile sites (FS: gaps, breaks, triradial figures, and several rearrangements) and the etiology of schizophrenia. Because of this, we were compared the frequencies of folate-sensitive FS from schizophrenic patients and normal individuals in short-term whole blood cultures. The rate of FS expression in the patients was considerably higher than in the controls. We determined 15 common FS (cFS) (1q21, 1q32, 2q21, 2q31, 3p14, 4q31, 5q31, 6q21, 6q26, 7q22, 7q32, 10q22, 13q32, Xp22 and Xq22), 6 rare FS (rFS) (6p21, 8q22, 11q23, 12q24, 16q22, and Xq26) and 2 previously unknown FS (3p25 and 5q22). Among these expressed FS, there was a significantly higher frequency of 12 FS at 2q31, 3p25, 3p14, 5q31, 6q21, 7q22, 7q32, 10q22, 11q23, 12q24, Xq22 and Xq26 in patient group than in controls by chi2 test (P = between 0.0001 to 0.036). Sites 3p14, 5q31 and 7q22 were also the most frequently observed cFS. Males exhibited twice as many FS as females, but no age effects were observed. The potential relationship between increased FS frequency and the occurrence of schizophrenia in these patients is discussed.  相似文献   

7.
Summary A population cytogenetic study of three groups of rare fragile sites defined in Human Gene Mapping 8 (HGM8, Berger et al. 1985) has been conducted using peripheral blood lymphocytes of healthy Japanese subjects. We have examined 1,022 blood donors for folate-sensitive and bromodeoxyuridine (BrdU)-requiring, and 845 for distamycin A-inducible fragile sites. Out of 17 rare autosomal fragile sites defined in HGM8, the following six were identified in Japan; folate-sensitive fra(2)(q11), fra(11)(q13) and fra(11)(q23), distamycin A-inducible fra(16)(q22) and fra(17)(p12), and BrdU-requiring fra(10)(q25). The incidences of distamycin A-inducible fra(16)(q22) (1.42%) and fra(17)(p12) (3.08%) were considerably higher than those of the other sites in Japan. Furthermore, a folate-sensitive fra(17)(p12) and a distamycin A-inducible fra(8)(q24.1) have been newly found in the present study. Their incidences were 0.10% (1/1,022) and 0.71% (6/845), respectively. Since the expression of this fra(17)(p12) was induced by fluorodeoxyuridine, supressed by thymidine, but not induced by distamycin A, it can be classified as a folate-sensitive site. The expression of the new distamycin A-inducible fra(8)(q24.1) was also enhanced by treatment with Hoechst 33258, berenil and 4,6-diamidino-2-phenylindole (DAPI). This fragile site fulfils all four classical criteria suggested by Sutherland (1979) and also new criteria for a rare fragile site defined in HGM8 (Berger et al. 1985).  相似文献   

8.
An investigation to understand the dynamics and biological significance of fragile site expression, and identification of 5-fluorodeoxyuridine (FUdR) induced chromosomal gaps/breaks, were carried out in an experimental flock of 45 Suffolk sheep. The statistical comparison revealed, highly significant variation in the frequency of chromosomal fragile site expression between control and FUdR cultures. Mean (± S.D.) values for cells with gaps and breaks, or aberrant cell count (AC), and the number of aberrations (NoA) per animal were 2.02 ± 0.34, 2.42 ± 0.48, 13.26 ± 0.85 and 21.87 ± 1.88 (P < 0.01) in control and FUdR cultures, respectively. The comparison of age revealed nonsignificant variation between control and FUdR cultures. The G-band analysis of fragile site data revealed gaps in 29 autosomal and two X-chromosomal bands in the control cultures, whereas FUdR treated cultures scored 78 unstable bands in autosomes of which 56 were significantly fragile. X-chromosomes expressed breaks and gaps in six G-negative bands and five of them (Xq13, Xq15, Xq17, Xq24 and Xq26) were significantly fragile. The distribution comparison of autosomal fragile sites between sex groups did not reveal any significant variation. Female X-chromosomes were significantly more fragile than the male X-chromosomes. The distribution comparison for age groups (lambs versus adults) revealed significantly higher number of fragile bands in adults. Comparison of published data on reciprocal translocations in sheep with the fragile-site data obtained in this study indicated that the break sites of both phenomena were correlated. Similarities were also found between fragile sites and breakpoints of evolutionary significance in family Bovidae.  相似文献   

9.
We examined the expression of a fragile site-like lesion and induction of sister chromatid exchanges (SCEs) at 11q23.1 in EBV-transformed lymphoblastoid cell lines derived from carriers of distamycin A-inducible fragile sites and ataxia telangiectasia patients. The fragile site-like lesion at 11q23.1 was found to be BrdU-enhanceable in all cell lines examined, and the expression frequencies increased linearly with the rates of BrdU substitution in replicated DNA. In addition, an increased frequency of SCEs was observed at 11q23.1 on the expressed chromosome. Thus, the BrdU-enhanceable fragile site-like lesion at 11q23.1 is a "hot spot" for the formation of SCEs, as has been reported for other rare and common fragile sites.  相似文献   

10.
The present study reports on the chromosomal expression and localization of aphidicolin-induced fragile sites in the standard karyotype of river buffalo (Bubalus bubalis, 2n = 50) with the aim of establishing a 'fragile site map' of the species. Totally, 400 aphidicolin-induced breakages were analyzed from eight young and clinically healthy animals, four males and four females; these breakages were localized in 106 RBG-negative chromosome bands or at the band-interband regions. The number of breakages per chromosome did not vary statistically 'among' the animals investigated but the differences among individual chromosomes were highly significant thus indicating that the chromosomal distribution of the breakages is not random and appears only partially related to chromosome length. Fragile sites were statistically determined as those chromosomal bands showing three or more breakages. In the river buffalo karyotype, 51 fragile sites were detected and localized on the standardized ideogram of the species. The most fragile bands were as follows: 9q213 with 24 breakages out of 400; 19q21 with 16, 17q21 and inacXq24 with 15, 15q23 with 13 and 13q23 with 12 breaks, respectively. Previous gene mapping analysis in this species has revealed that the closest loci to these fragile sites contain genes such as RASA1 and CAST (9q214), NPR3 and C9 (19q19), PLP and BTK (Xq24-q25), OarCP09 (15q24), and EDNRB (13q22) whose mutations are responsible for severe phenotypic malformations and immunodeficiency in humans as well as in mice and meat quality in pigs. Further cytogenetic and molecular studies are needed to fully exploit the biological significance of the fragile sites in karyotype evolution of domestic animals and their relationships with productive and reproductive efficiency of livestock.  相似文献   

11.
Summary Polymorphic DNA markers located in bands 16q13, 16q21 and 16q22 were examined for recombination with FRA16B, the fragile site at 16q22.100. A tight linkage cluster D16S10-FRA16B-D16S4-HP was established. There were no recombinants between D16S10 and D16S4, which flank FRA16B. The markers D16S10 and D16S4 are in close proximity on the genetic map and delineate a small chromosomal segment, which contains the distamycin A-inducible fragile site.  相似文献   

12.
Summary Lymphocyte cultures from man, gorilla, and chimpanzee were treated with 5-azacytidine and 5-azadeoxycytidine. These cytidine analogues induce common fragile sites in the chromosome bands 1q42 and 19q13 of man. A rare fragile site is induced by 5-azadeoxycytidine in the band 1q24. The optimum conditions required for inducing these new fragile sites were determined by a series of experiments. The common fragile site in human chromosome 1q42 also exists in the gorilla and chimpanzee in the homologous band 1q32. The fragile site in human chromosome 19q13 was demonstrated in the gorilla in the homologous chromosome band 20q13. These are the first examples found of evolutionary highly conserved fragile sites in homologous chromosome bands in related primate species. The interaction between 5-azacytidine, 5-azadeoxycytidine, and chromosomal DNA; the evolutionary conservation of genes located within or closely adjacent to the fragile sites in the chromosome 1 of Hominoidea; and the phylogenetic origin of the two new common fragile sites are discussed.  相似文献   

13.
Summary The effect of the oligopeptide antibiotic distamycin A on human lymphocyte cultures was examined. Distamycin A specifically inhibits the condensation of the Y heterochromatin and induces a fragile site in the chromosome 16 (band q22) in some individuals. The optimal culture conditions under which an undercondensation of the Y heterochromatin and an induction of the fragile site in 16q22 can be achieved by in vitro treatment of lymphocytes were determined. This also permits the use of distamycin A in routine diagnostics of human chromosomes. The use of this technique in the analysis of translocations involving the Y chromosome is presented. The distamycin A-DNA interaction and the different possible explanations for the distamycin A-induced undercondensations of the Y heterochromatin and fragile sites 16q22 are discussed.  相似文献   

14.
The distamycin A-sensitive fragile site fra(16)(q22) is a precisely localized chromosomal marker. When expressed at metaphase, it visibly separates the chromosome material on either side of the fragile site. Using a cDNA probe encoding both the alpha and beta haptoglobin chains, the haptoglobin loci were found by in situ hybridization to be distal to fra(16)(q22).  相似文献   

15.
Summary Aphidicolin, a specific inhibitor of DNA polymerase , is known to induce chromosomal aberrations. At concentrations that did not greatly affect mitotic index, aphidicolin induced a striking number of chromosome gaps and breaks distributed in a highly nonrandom manner in cultured human lymphocytes. Specific chromosome bands, especially 2q31, 3p14, 6q26, 7q32, 16q23, and Xp22 were preferentially damaged in lymphocytes from each of 12 subjects studied. Total and site-specific damage was dose dependent and greatly increased when folic acid was removed from the medium. The sites most sensitive to aphidicolin damage include the hot spots seen under conditions of thymidylate stress and in studies of spontaneous chromosomal damage. The fragile X site, which can also be induced by thymidylate stress, was not induced by aphidicolin in lymphocytes, suggesting a separate mechanism for its induction. Aphidicolin represents a novel tool for detection of hot spots on human chromosomes through the mechanism of DNA polymerase inhibition. The hot spots induced by aphidicolin represent a new class of fragile sites which we term common fragile sites.  相似文献   

16.
The antihypertensive drug atenolol was found to induce chromosome loss, detected as micronuclei in the peripheral lymphocytes of treated patients. The fundamental question which chromosomes the micronuclei were derived from remains to be answered. Analysis of structural chromosomal aberrations (CAs) and expression of fragile sites (FS) were pursued in this study. They revealed a significantly higher incidence of chromosomal aberrations (chromatid and chromosome breaks) in patients compared with controls, where 10 FS emerged as specific. Also, the band 17q12–21, where known fragile sites have not been reported, was only expressed in atenolol-treated patients. Fluorescence in situ hybridization using chromosome-specific probes revealed the preferential involvement of chromosomes 7, 11, 17 and X in the micronuclei (MN) of patients. The results also suggest a correlation between chromosomal fragility and content of MN, and support the findings for a linkage between hypertension and a locus on chromosome 17.  相似文献   

17.
When supplied to human leukocytes grown in complete medium (RPMI 1640), DAPI, a nonintercalating compound specific for the AT bases of DNA, induces the appearance of three common fragile sites (CFRA) mapped at 1q42, 2q31, and 7p22. The same treatment with DAPI in a medium deficient in folic acid and thymidine (199 M) considerably increases the expression of these sites and induces the appearance of a further 16 CFRA sites at 1q24, 2p25, 4p16, 4q25, 5p15.3, 6p21.3, 6p25, 6q13, 9p24, 16p13.3, 16q23, 17q21, 18q23, 20q13.1, 21q21, and Xq28. The results point to the existence of a synergism between DAPI and thymidylate-stress culture conditions in inducing site-specific chromosome damage. The results also agree with the hypothesis that DAPI-induced CFRA sites are DNA late-replicating chromosomal areas rich in AT bases.  相似文献   

18.
22q11 Deletion syndrome (22q11DS) is a common microdeletion syndrome with variable expression, including congenital and later onset conditions such as schizophrenia. Most studies indicate that expression does not appear to be related to length of the deletion but there is limited information on the endpoints of even the common deletion breakpoint regions in adults. We used a real-time quantitative PCR (qPCR) approach to fine map 22q11.2 deletions in 44 adults with 22q11DS, 22 with schizophrenia (SZ; 12 M, 10 F; mean age 35.7 SD 8.0 years) and 22 with no history of psychosis (NP; 8 M, 14 F; mean age 27.1 SD 8.6 years). QPCR data were consistent with clinical FISH results using the TUPLE1 or N25 probes. Two subjects (one SZ, one NP) negative for clinical FISH had atypical 22q11.2 deletions confirmed by FISH using the RP11-138C22 probe. Most (n = 34; 18 SZ, 16 NP) subjects shared a common 3 Mb hemizygous 22q11.2 deletion. However, eight subjects showed breakpoint variability: a more telomeric proximal breakpoint (n = 2), or more centromeric (n = 3) or more telomeric distal breakpoint (n = 3). One NP subject had a proximal nested 1.4 Mb deletion. COMT and TBX1 were deleted in all 44 subjects, and PRODH in 40 subjects (19 SZ, 21 NP). The results delineate proximal and distal breakpoint variants in 22q11DS. Neither deletion extent nor PRODH haploinsufficiency appeared to explain the clinical expression of schizophrenia in the present study. Further studies are needed to elucidate the molecular basis of schizophrenia and clinical heterogeneity in 22q11DS.  相似文献   

19.
The fragile sites at 10q25, 16q22, and 17p12 can all be induced in lymphocyte culture by BrdU or BrdC added 6-12 hrs prior to harvest. Without induction, fra(10)(q25) is rarely expressed spontaneously, whereas fra(16)(q22) is frequently expressed spontaneously. Fra(17)(p12) is frequently expressed spontaneously but is probably expressed only after induction in some individuals. Distamycin A, netropsin, and Hoechst 33258 induced high levels of expression of fra(16)(q22) and fra(17)(p12) but did not enhance expression of fra(10)(q25). The mechanisms of induction of fra(16)(q22) by BrdU and distamycin A appear to be different, since the time of induction by BrdU reaches a maximum about 12 hrs prior to harvest whereas induction by distamycin A requires much longer exposure. The fragile sites at 10q25 and 16q22 were both induced in fibroblast culture by BrdU. Fra(17)(p12) is accepted as a fragile site because preliminary studies show that it behaves similarly in lymphocyte culture to fra(16)(q22); however, there is only limited evidence for fragility at 17p12.  相似文献   

20.
Summary A normal baby was cytogenetically examined immediately after birth for the possible presence of a fragile (16)(q22), which had been found in her mother and in her retarded sister with a 46,XX;46,XX,del(16)(q22) mosaic karyotype. Distamycin a was added to the cultures to enhance the fragile (16)(q22) expression. The response of the baby to the action of distamycin a in vitro was much greater than that of her family members. A fragile (16)(q22) was induced in many cells as well as a fragile (1)(q32), which was also found in her mother. This fragile site, which is known to be a cancer breakpoint, has not been reported so far either to be familial or to be inducible by distamycin A. The concomitance of fragile (1)(q32) with fragile (16)(q22) and their possible significance are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号