首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gross JW  Hegeman AD  Gerratana B  Frey PA 《Biochemistry》2001,40(42):12497-12504
The dTDP-glucose 4,6-dehydratase catalyzed conversion of dTDP-glucose to dTDP-4-keto-6-deoxyglucose occurs in three sequential chemical steps: dehydrogenation, dehydration, and rereduction. The enzyme contains the tightly bound coenzyme NAD(+), which mediates the dehydrogenation and rereduction steps of the reaction mechanism. In this study, we have determined that Asp135 and Glu136 are the acid and base catalysts, respectively, of the dehydration step. Identification of the acid catalyst was performed using an alternative substrate, dTDP-6-fluoro-6-deoxyglucose (dTDP-6FGlc), which undergoes fluoride ion elimination instead of dehydration, and thus does not require protonation of the leaving group. The steady-state rate of conversion of dTDP-6FGlc to dTDP-4-keto-6-deoxyglucose by each Asp135 variant was identical to that of wt, in contrast to turnover using dTDP-glucose where differences in rates of up to 2 orders of magnitude were observed. These results demonstrate Asp135's role in protonating the glucosyl-C6(OH) during dehydration. The base catalyst was identified using a previously uncharacterized, enzyme-catalyzed glucosyl-C5 hydrogen-solvent exchange reaction of product, dTDP-4-keto-6-deoxyglucose. Base catalysis of this exchange reaction is analogous to that occurring at C5 during the dehydration step of net catalysis. Thus, the decrease in the rate of catalysis ( approximately 2 orders of magnitude) of the exchange reaction observed with Glu136 variants demonstrates this residue's importance in base catalysis of dehydration.  相似文献   

2.
Gerratana B  Cleland WW  Frey PA 《Biochemistry》2001,40(31):9187-9195
Escherichia coli dTDP-glucose 4,6-dehydratase and UDP-galactose 4-epimerase are members of the short-chain dehydrogenase/reductase SDR family. A highly conserved triad consisting of Ser/Thr, Tyr, and Lys is present in the active sites of these enzymes as well in other SDR proteins. Ser124, Tyr149, and Lys153 in the active site of UDP-galactose 4-epimerase are located in similar positions as the corresponding Thr134, Tyr160, and Lys164, in the active site of dTDP-glucose 4,6-dehydratase. The role of these residues in the first hydride transfer step of the dTDP-glucose 4,6-dehydratase mechanism has been studied by mutagenesis and steady-state kinetic analysis. In all mutants except T134S, the k(cat) values are more than 2 orders of magnitude lower than of wild-type enzyme. The substrate analogue, dTDP-xylose, was used to investigate the effects of the mutations on rate of the first hydride transfer step. The first step becomes significantly rate limiting upon mutation of Tyr160 to Phe and only partly rate limiting in the reaction catalyzed by K164M and T134A dehydratases. The pH dependence of k(cat), the steady-state NADH level, and the fraction of NADH formed with saturating dTDP-xylose show shifts in the pK(a) assigned to Tyr160 to more basic values by mutation of Lys164 and Thr134. The pK(a) of Tyr160, as determined by the pH dependence of NADH formation by dTDP-xylose, is 6.41. Lys164 and Thr134 are believed to play important roles in the stabilization of the anion of Tyr160 in a fashion similar to the roles of the corresponding residues in UDP-galactose 4-epimerase, which facilitate the ionization of Tyr149 in that enzyme [Liu, Y., et al. (1997) Biochemistry 35, 10675--10684]. Tyr160 is presumably the base for the first hydride transfer step, while Thr134 may relay a proton from the sugar to Tyr160.  相似文献   

3.
The construction of three lambda bacteriophages containing parts of the structural gene for threonyl-tRNA synthetase, thrS, and those for the two subunits of phenylalanyl-tRNA synthetases, pheS and pheT, is described. These phages were used as hybridization probes to measure the in vivo levels of mRNA specific to these three genes. Plasmid pB1 carries the three genes thrS, pheS, and pheT, and strains carrying the plasmid show enhanced levels of mRNA corresponding to these genes. Although the steady-state levels of threonyl-tRNA synthetase and phenylalanyl-tRNA synthetase produced by the presence of the plasmid differed by a factor of 10, their pulse-labeled mRNA levels were about the same. Mutant derivatives of pB1 were also analyzed. Firstly, a cis-acting insertion located before the structural genes for phenylalanyl-tRNA synthetase caused a major decrease in both pheS and pheT mRNA. Secondly, mutations affecting either structural gene pheS or pheT caused a reduction in the mRNA levels for both pheS and pheT. This observation suggests that autoregulation plays a role in the expression of phenylalanyl-tRNA synthetase.  相似文献   

4.
Hegeman AD  Gross JW  Frey PA 《Biochemistry》2001,40(22):6598-6610
A model of the Escherichia coli dTDP-glucose-4,6-dehydratase (4,6-dehydratase) active site has been generated by combining amino acid sequence alignment information with the 3-dimensional structure of UDP-galactose-4-epimerase. The active site configuration is consistent with the partially refined 3-dimensional structure of 4,6-dehydratase, which lacks substrate-nucleotide but contains NAD(+) (PDB file ). From the model, two groups of active site residues were identified. The first group consists of Asp135(DEH), Glu136(DEH), Glu198(DEH), Lys199(DEH), and Tyr301(DEH). These residues are near the substrate-pyranose binding pocket in the model, they are completely conserved in 4,6-dehydratase, and they differ from the corresponding equally well-conserved residues in 4-epimerase. The second group of residues is Cys187(DEH), Asn190(DEH), and His232(DEH), which form a motif on the re face of the cofactor nicotinamide binding pocket that resembles the catalytic triad of cysteine-proteases. The importance of both groups of residues was tested by mutagenesis and steady-state kinetic analysis. In all but one case, a decrease in catalytic efficiency of approximately 2 orders of magnitude below wild-type activity was observed. Mutagenesis of each of these residues, with the exception of Cys187(DEH), which showed near-wild-type activity, clearly has important negative consequences for catalysis. The allocation of specific functions to these residues and the absolute magnitude of these effects are obscured by the complex chemistry in this multistep mechanism. Tools will be needed to characterize each chemical step individually in order to assign loss of catalytic efficiency to specific residue functions. To this end, the effects of each of these variants on the initial dehydrogenation step were evaluated using a the substrate analogue dTDP-xylose. Additional steady-state techniques were employed in an attempt to further limit the assignment of rate limitation. The results are discussed within the context of the 4,6-dehydratase active site model and chemical mechanism.  相似文献   

5.
Various constructs of the human immunodeficiency virus, type 1 (HIV-1) protease containing flanking Pol region sequences were expressed as fusion proteins with the maltose-binding protein of the malE gene of Escherichia coli. The full-length fusion proteins did not exhibit self-processing in E. coli, thereby allowing rapid purification by affinity chromatography on cross-linked amylose columns. Denaturation of the fusion protein in 5 M urea, followed by renaturation, resulted in efficient site-specific autoprocessing to release the 11-kDa protease. Rapid purification involving two column steps gave an HIV-1 protease preparations of greater than 95% purity (specific activity approximately 8500 pmol.min-1.micrograms protease-1) with an overall yield of about 1 mg/l culture. Incubation of an inactive mutant protease fusion protein with the purified wild-type protease resulted in specific trans cleavage and release of the mutant protease. Analysis of products of the HIV-1 fusion proteins containing mutations at either the N- or the C-terminal protease cleavage sites indicated that blocking one of the cleavage sites influences the cleavage at the non-mutated site. Such mutated full-length and truncated protease fusion proteins possess very low levels of proteolytic activity (approximately 5 pmol.min-1.micrograms protein-1).  相似文献   

6.
7.
Glutamate transport in wild-type and mutant strains of Escherichia coli   总被引:20,自引:17,他引:3  
Halpern, Yeheskel S. (Hebrew University-Hadassah Medical School, Jerusalem, Israel), and Meir Lupo. Glutamate transport in wild-type and mutant strains of Escherichia coli. J. Bacteriol. 90:1288-1295. 1965.-Mutants of Escherichia coli able to grow on glutamate as their source of carbon showed glutamate dehydrogenase and glutamate-oxaloacetate transaminase activities similar to those possessed by the parent strain. The mutants took up glutamate at a much faster rate and showed a several-fold greater capacity for concentrating the amino acid than did the corresponding parent strains. Curvilinear double reciprocal plots of velocity of uptake versus glutamate concentration were obtained with the E. coli H strains. A break in the curve of glutamate uptake was observed with the E. coli K-12 strains when incubated in a glucose medium. It is suggested that these findings may be due to allosteric activation of glutamate permease by its substrate.  相似文献   

8.
9.
A full-length Caenorhabditis elegans cDNA that encodes the alpha subunit of casein kinase II was inserted into the inducible bacterial expression vector pET3a to generate the plasmid pCK alpha. Escherichia coli DE21 lysozyme S that was transformed with pCK alpha expressed soluble, catalytically active casein kinase II alpha upon induction with isopropyl beta-D-thiogalactopyranoside. The expressed alpha subunit was purified to homogeneity with a 60% yield by chromatography on CM-Sephadex, P-11 phosphocellulose, and heparin-agarose. The Mr values estimated from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 42,000) or calculated from hydrodynamic measurements (s20,w = 3.3 S, Stokes radius = 2.8 nm, Mr = 37,000) were similar, thereby indicating that the expressed enzyme is monomeric. The native holoenzyme and the expressed alpha subunit exhibited several similar properties including the utilization of both ATP and GTP as substrates and the susceptibility to inhibition of phosphotransferase activity by low concentrations of heparin. However, the kcat for E. coli-derived alpha was only 9% of the kcat for the native holoenzyme, and catalytic activity was not stimulated by polyamines. Recombinant casein kinase II alpha aggregates at low ionic strength, and the aggregation is partially reversible. A mutant alpha subunit in which Lys74 and Lys75 were substituted by glutamic acid residues was constructed by site-directed mutagenesis. The mutant enzyme was not inhibited by typically effective concentrations of heparin (e.g. IC50 = 0.3 micrograms/ml) because the affinity of modified recombinant casein kinase II Glu-74Glu-75 for heparin decreased approximately 70-fold. Thus, Lys74 and Lys75 are implicated in the heparin binding, inhibitory domain. The successful expression of casein kinase II alpha in E. coli will facilitate the analysis of the structural basis for functional domains in this enzyme.  相似文献   

10.
Death mechanisms in airborne Escherichia coli   总被引:6,自引:0,他引:6  
  相似文献   

11.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

12.
13.
14.
Enterotoxigenic strains of Escherichia coli (ETEC) may produce a heat-labile enterotoxin (LT), a heat-stable enterotoxin (ST) or both enterotoxins. Certain serogroups are represented more frequently than others in ETEC isolated from humans. The transfer of three plasmids encoding enterotoxin production (Ent) to 22 non-toxigenic E. coli strains of many different O:H serotypes was studied. The Ent plasmids encoded ST (TP276), or LT (TP277), or ST + LT (TP214), and all carried antibiotic-resistance determinants. Twenty-one recipient strains acquired TP214, 18 acquired TP277 and 14 acquired TP276. Strains of those serotypes to which ETEC in diarrhoeal studies commonly belong neither acquired nor maintained Ent plasmids with a higher frequency than strains of those serotypes to which ETEC rarely belong. The recipient strains, with one exception, all expressed ST, or LT, or ST and LT, when they had acquired the appropriate plasmid; a non-motile strain belonging to O serogroup 88 expressed LT but failed to express ST when it acquired TP214 or TP277.  相似文献   

15.
Gene replacement using linear double-stranded DNA fragments in wild-type Escherichia coli transformation is generally inefficient due to exonucleolytic degradation of incoming DNA. Recombination-proficient strains, in which the exonucleolytic activity of RecBCD is inactivated, have been used as transformation recipients to overcome this difficulty. Here we report that gene replacements using linear double-stranded donor DNA can be achieved in wild-type E.coli if electrocompetent cells are used. Using a plasmid target, we obtained 10(2)-10(3) gene replacement events/microgram linear DNA. Using an independent chromosomal target, approximately 60 gene replacement events/microgram linear DNA were obtained. The presence of Chi sites on the linear DNA, which are known to block DNA degradation and stimulate recombination in E.coli, had no effect on gene replacement efficiency in either case. RecBCD-mediated exonucleolytic activity was found to be diminished in electroporated cells. Electrotransformation thus provides a simple way to perform gene replacements in many E.coli strains.  相似文献   

16.
17.
The membrane-bound proton pumping inorganic pyrophosphate synthase/pyrophosphatase (H(+)-PPi synthase/H(+)-PPase) from the photosynthetic bacterium Rhodospirillum rubrum was functionally expressed in Escherichia coli C43(DE3) cells. Based on a new topology model of the enzyme, charged residues predicted to be located near or within the membrane were selected for site-directed mutagenesis. Several of these mutations resulted in an almost complete inactivation of the enzyme. Four mutated residues appear to show a selective impairment of proton translocation and are thus likely to be involved in coupling pyrophosphate hydrolysis with electrogenic proton pumping. Two of these mutations, R176K and E584D, caused increased tolerance to salt. In addition, the former mutation caused an increased K(m) of one order of magnitude for the hydrolysis reaction. These results and their possible implications for the enzyme function are discussed.  相似文献   

18.
Two active mutants of aspartate transcarbamoylase from Escherichia coli have been purified from strains which produce large quantities of enzyme. Each enzyme was isolated from a different spontaneous revertant of a pyrimidine auxotrophic strain produced by mutagenesis with nitrogen mustard. Both enzymes exhibit allosteric properties with one having significantly less and the other more cooperativity than wild-type enzyme. Isolated catalytic subunits had different values of Km and Vmax. Studies on hybrids constructed from mutant catalytic and wild-type regulatory subunits (and vice versa) indicate that catalytic chains encoded by pyrB and not the regulatory chains encoded by pyrI were affected by the mutations. Differential scanning calorimetry experiments support these conclusions. Both mutant enzymes undergo ligand-promoted conformational changes analogous to those exhibited by wild-type enzyme: a 3% decrease in the sedimentation coefficient and a 5-fold increase in the reactivity of the sulfhydryl groups of the regulatory chains. Interactions between catalytic and regulatory chains in the mutants are weaker than those in the wild-type enzyme. The gross conformational changes of the mutants upon adding the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate, in the presence of the substrate, carbamoylphosphate, and the activator, ATP, correlate with differences in cooperativity. The mutant with lower cooperativity is more readily converted from the low-affinity, compact, T-state to the high-affinity, swollen, R-state than is wild-type enzyme; this conversion for the more cooperative enzyme is energetically less favorable.  相似文献   

19.
O(6)-Methylguanine-DNA methyltransferase is induced in Escherichia coli during growth in low levels of N-methyl-N'-nitro-N-nitrosoguanidine. We have developed a sensitive assay for quantitating low levels of this activity with a synthetic DNA substrate containing 3H-labeled O(6)-methylguanine as the only modified base. Although both wild-type and adaptation-deficient (ada) mutants of E. coli contained low but comparable numbers (from 13 to 60) of the enzyme molecules per cell, adaptation treatment caused a significant increase of the enzyme in the wild type but not in the ada mutants, suggesting that the ada mutation is in a regulatory locus and not in the structural gene for the methyltransferase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号