首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root and shoot growth of semi-dwarf and taller winter wheats   总被引:1,自引:0,他引:1  
Investigations are reported of root and shoot growth in semi-dwarf and taller winter wheat varieties grown in contrasting soils over three years. Comparisons were made of the distribution with depth of roots, estimated by injecting rubidium-86 into stem bases and counting the content in soil cores. The relative ability to absorb phosphate from different zones was measured from the recovery in aerial parts of 32P injected into the soil at different depths. The distribution of dry matter in roots and aerial parts, and total root length, was measured using soil cores and samples of aerial parts taken during the growth of the crop. Relative growth rates of the aerial parts followed a sigmoid curve, but those of the roots showed little change between germination and anthesis. There was little evidence of varietal differences in root growth, though there was some indication that at depth the roots of the semi-dwarf varieties were more extensive and absorbed more phosphate than those of the taller varieties.  相似文献   

2.
Individual grass (Bouteloua gracilis) and shrub (Gutierrezia sarothrae) plants were either excavated as monoliths on nail boards, exposed to 14CO2, or stem-injected with 86Rb to compare the ability of the techniques to determine horizontal and vertical distribution of roots. The vertical distribution or roots directly under plant centers obtained by coring most closely correlated with monolith root length. 14C activity greatly overestimated near-surface roots and underestimated deep roots. 86Rb activity did not follow the pattern of geometric decrease in root biomass with depth. Comparisons of both isotopes with monolith root length, over both horizontal and vertical axes, indicated that 14C activity was consistently concentrated near the soil surface, and 86Rb activity was highly variable and randomly distributed. 14C may better represent root activity than root mass, and stem-injection methods can result in nonuniform labeling of roots. Caution should be exercised when using tracers to infer root biomass distributions. Resource partitioning between shrubs and grasses is discussed in relation to soil water dynamics in this semiarid grassland.  相似文献   

3.
Root distribution and interactions between intercropped species   总被引:28,自引:0,他引:28  
Li L  Sun J  Zhang F  Guo T  Bao X  Smith FA  Smith SE 《Oecologia》2006,147(2):280-290
Even though ecologists and agronomists have considered the spatial root distribution of plants to be important for interspecific interactions in natural and agricultural ecosystems, few experimental studies have quantified patterns of root distribution dynamics and their impacts on interspecific interactions. A field experiment was conducted to investigate the relationship between root distribution and interspecific interactions between intercropped plants. Roots were sampled twice by auger and twice by the monolith method in wheat (Triticum aestivum L.)/maize (Zea mays L.) and faba bean (Vicia faba L.)/maize intercropping and in sole wheat, maize, and faba bean up to 100 cm depth in the soil profile. The results showed that the roots of intercropped wheat spread under maize plants, and had much greater root length density (RLD) at all soil depths than sole wheat. The roots of maize intercropped with wheat were limited laterally, but had a greater RLD than sole-cropped maize. The RLD of maize intercropped with faba bean at different soil depths was influenced by intercropping to a smaller extent compared to maize intercropped with wheat. Faba bean had a relatively shallow root distribution, and the roots of intercropped maize spread underneath them. The results support the hypotheses that the overyielding of species showing benefit in the asymmetric interspecific facilitation results from greater lateral deployment of roots and increased RLD, and that compatibility of the spatial root distribution of intercropped species contributes to symmetric interspecific facilitation in the faba bean/maize intercropping. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
The effect of living plants on root decomposition of four grass species   总被引:3,自引:0,他引:3  
We tested whether living plant roots of Holcus lanatus and Festuca ovina can affect the decomposition rate of dead roots of Holcus lanatus, Festuca rubra, Anthoxanthum odoratum and Festuca ovina. Moreover, we investigated whether this effect is dependent on the decomposing root species or the nitrogen supply during the growth of the roots. The selected perennial grass species are typical of grassland habitats in a range from high to low nitrogen availability: H. lanatus, F. rubra, A. odoratum and F. ovina. Seedlings of these species were homogeneously labelled with 14CO2 for eight weeks. Plants were grown on soil at two nitrogen levels: one without additional nitrogen and one with nitrogen addition (14 g N m−2).
At the start of the decomposition experiment 14C labelled roots were separated from soil and incubated in litterbags (mesh width 1 mm) in fresh soil. These 14C labelled roots were left to decompose for 19 weeks in an open greenhouse in soil planted with H. lanatus or F. ovina and in unplanted soil. After the incubation period, the decomposition of the 14C labelled roots of the four species was measured. The mass and 14C losses from the dead roots were calculated and the living plant biomass and C, N and P contents of the living plants were measured.
Living plant roots of F. ovina had positive effects on the decomposition rate of F. ovina root litter, but dead A. odoratum roots from the N fertilized treatment decomposed slower in the presence of living F. ovina plants. It seems likely that living plants like F. ovina exude carbon compounds that stimulate the growth of soil microbes and thereby increase dead root decomposition and mineralization. Root decomposition rates differed among the species. We found no evidence to support our hypothesis that dead roots of high fertility species (i.e. H. lanatus and F. rubra) decompose faster than dead roots of low fertility species (i.e. A. odoratum and F. ovina). In unplanted soil, the mass loss and total 14C loss from A. odoratum dead roots were higher than those from H. lanatus, F. rubra and F. ovina dead roots. Dead roots of F. ovina lost less mass and total 14C than dead roots of H. lanatus.  相似文献   

5.
Summary A study was made of the relationship between the number of roots (Nr) observed on unit area of the freshly exposed, horizontal faces of soil cores, and the amounts of roots (per unit volume) present in the same cores. Soil cores, 7 cm diameter, were extracted to depths of 1 m from cereal crops in 1976 at three field sites located on clay soils. Sampling was either at the start of stem elongation, or at anthesis. Estimates of root length per unit soil volume (L) were derived from Nr by assuming random orientation of roots in the soil.Values of L were found to be highly correlated with the measured lengths of both the main roots (root axes) and the total roots (axes and laterals) washed from the soil at a given growth stage, for each of the soils. On average, L was 3.3 times the length of root axes washed from the soil, and was 0.42 times the length of total roots, but there was appreciable variation between different growth stages and field sites. Possible factors giving rise to differences between L and the measured lengths of roots are discussed. Estimates of root length from observation of soil cores may nonetheless provide a suitable basis for rapidly comparing therelative distribution of roots down the soil profile under field conditions.  相似文献   

6.
This study investigated the patterns of root growth and water uptake of maize (Zea mays L.) and cowpea (Vigna unguiculata (L.) Walp) grown in a mixture under greenhouse conditions. The plants were grown in root boxes for 5 weeks under 2 watering regimes; fully irrigated and water stress conditions, followed by a 5-day drying cycle imposed during the 6th week of growth. Water uptake patterns were analysed during the drying cycle. The two-dimensional distribution of the roots of both plants in the boxes was determined immediately at the end of the drying cycle. Under well-irrigated conditions, the roots of the component plants grew profusely into all sections of the root box and intermingled considerably. Water stress resulted in the decline of root growth of maize and cowpea but the root:shoot ratios of maize and cowpea were not affected, suggesting that there was no significant effect of water stress on root:shoot partitioning. However, water stress affected the biomass distribution between fine and coarse roots in cowpea. About 64% by weight of cowpea roots under water stress were coarse whereas as against 48% under well-irrigated conditions. Furthermore, water stress generally restricted the lateral extent of the roots of both maize and cowpea with a tendency of clumping together of the root systems and a reduced degree of intermingling. Thus, the extent of mixing of the root systems was apparently controlled by the availability of soil water. Water uptake from the well-irrigated soil in the root boxes was initially restricted to the sections directly below the base of each plant. Although roots of both plants were present in almost all sections of the root box, all the sections did not contribute simultaneously to water uptake by each plant. Water uptake was delayed from the middle intermingled zones. In effect, uptake patterns did not relate generally to the root distribution. The tendency was for the component plants to initially `avoid' water uptake from zones of intense intermingling or competition.  相似文献   

7.
刘媛  席慧青  陈姝含  邸楠  席本野 《生态学报》2023,43(24):10363-10375
通过林木根系研究中不同吸收根的判定标准下根系空间分布特征的差异对比,阐明根系分级标准对吸收根空间分布格局的影响,提升根系研究精度,明确林木根系有效“觅食”区域。在7年生毛白杨林分中于5株样树周围挖取780个土柱,选取根系形态指标:根系平均直径(RD)、根系表面积密度(RAD)、根长密度(RLD)和根系体积密度(RVD)研究其垂向与径向的分布动态,并分析不同吸收根判定标准对毛白杨细根空间分布以及各形态指标的影响。结果表明:选取2 mm作为吸收根判定标准确实会导致运输根被误判为吸收根,但其空间分布特征仍能反映吸收根的真实空间分布格局。而且在该判定标准下,判定标准对于实际的细根形态和空间分布情况是否会产生的影响由于监测指标的不同以及研究位置的变化而不同。其中RAD、RLD和RVD的空间分布特征基本相同,但RVD的差值比例远高于其他指标,且深土层的差值比例普遍高于浅土层。因此,以2 mm为吸收根判定标准时,选取RLD和RAD更能准确反映吸收根的真实空间分布格局,且该标准更适用于在进行相对较浅的土层中开展研究,采用2 mm为阈值划分吸收根研究细根垂直分布特征时建议以各形态指标在各个土层所占比例来...  相似文献   

8.
Information on the response of root growth and morphology to soil strength is useful for testing suitability of existing and new tillage methods and/or for selecting plants suitable for a specific site with or without tillage. Although there is extensive published information on the root growth-soil strength relationships for annual agricultural plants, such information is scarce for woody, perennial tree species. The purpose of this study is to examine growth and morphology of the root systems of 17-day-old eucalypt seedlings with respect to variation in soil strength. Soil strength in this study was varied by compaction of a well-aggregated clay soil to bulk densities of 0.7–1.0 Mg m-3 whilst maintaining adequate water availability and aeration for plant growth. Lengths and tip-diameters of primary and lateral roots were measured on the excavated root systems of seedlings.With increase in bulk density and also soil strength (expressed as penetrometer resistance), total length of primary and lateral roots decreased. There were 71 and 31% reduction in the lengths of primary and lateral roots respectively with an increase in penetrometer resistance from 0.4 to 4.2 MPa. This indicated primary roots to be more sensitive to high soil strength than the lateral roots. Average length of lateral roots and diameters of both primary and lateral root tips increased with an increase in soil strength as well. There was greater abundance of lateral roots (no. of lateral roots per unit length of primary root) and root hairs with increased soil strength. The observed root behaviour to variable soil strength is discussed in the context of compensatory growth of roots and overall growth of plants.  相似文献   

9.
The mechanism responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation in sudangrass (Sorghum vulgare Pers.) was investigated in a phosphorus-deficient sandy soil (0.5 micrograms phosphorus per gram soil) amended with increasing levels of phosphorus as superphosphate (0, 28, 56, 228 micrograms per gram soil). The root phosphorus content of 4-week-old plants was correlated with the amount of phosphorus added to the soil. Root exudation of amino acids and reducing sugars was greater for plants grown in phosphorus-deficient soil than for those grown in the phosphorus-treated soils. The increase in exudation corresponded with changes in membrane permeability of phosphorus-deficient roots, as measured by K+ (86Rb) efflux, rather than with changes in root content of reducing sugars and amino acids. The roots of phosphorus-deficient plants inoculated at 4 weeks with Glomus fasciculatus were 88% infected after 9 weeks as compared to less than 25% infection in phosphorus-sufficient roots; these differences were correlated with root exudation at the time of inoculation. For plants grown in phosphorus-deficient soil, infection by vesicular-arbuscular mycorrhizae increased root phosphorus which resulted in a decrease in root membrane permeability and exudation compared to nonmycorrhizal plants. It is proposed that, under low phosphorus nutrition, increased root membrane permeability leads to net loss of metabolites at sufficient levels to sustain the germination and growth of the mycorrhizal fungus during pre- and postinfection. Subsequently, mycorrhizal infection leads to improvement of root phosphorus nutrition and a reduction in membrane-mediated loss of root metabolites.  相似文献   

10.
One rape (Brassica napus cv. Wesroona) plant and four cotton (Gossypium hirsutum cv. Sicot 3) plants were grown in plastic cells containing soil labelled with 407 kBq of33P g−1 soil. After 5–8 days of growth, the33P depletion zones of all plants were autoradiographed and33P uptake by plants was measured. The autoradiographs were scanned with a microdensitometer and the optical densities at several places within the33P depletion zones of roots were obtained. The volume of soil explored by root hairs was estimated from measurements of root diameters and lengths of roots and root hairs. About half of the total33P depleted by cotion roots came from outside the root hair cylinder whereas most of33P taken up by rape was from within the root hair cylinder. Plants grown in a macrostructured soil may have roots growing in voids, within aggregates or on the surfaces of aggregates. The results of this study demonstrate that root hairs have a strong influence on the accessibility of phosphorus to roots in such a soil, and thus on the phosphorus nutrition of plants.  相似文献   

11.
Water uptake by plant roots is a main process controlling water balance in field profiles and vital for agro-ecosystem management. Based on the sap flow measurements for maize plants (Zea mays L.) in a field under natural wet- and dry-soil conditions, we studied the effect of vertical root distribution on root water uptake and the resulted changes of profile soil water. The observations indicate that depth of the most densely rooted soil layer was more important than the maximum rooting depth for increasing the ability of plants to cope with the shortage of water. Occurrence of the most densely rooted layer at or below 30-cm soil depth was very conducive to maintaining plant water supply under the dry-soil conditions. In the soil layers colonized most densely by roots, daytime effective soil water saturation (S e) always dropped dramatically due to the high-efficient local water depletion. Restriction of the rooting depth markedly increased the difference of S e between the individual soil layers particularly under the dry-soil conditions due likely to the physical non-equilibrium of water flow between the layers. This study highlights the importance of root distribution and pattern in regulating soil water use and thereby improving endurance of plants to seasonal droughts for sustainable agricultural productivity.  相似文献   

12.
The concept of root contact hypothesizes that the absorbing roots grown in sandy soil are only partially effective in water uptake. Co-ordination of water supply and demand in the plant requires that the capacity for water uptake from the soil should correspond to an operational rate of water loss from the leaves. To examine how the plant hydraulic system responds to variations in soil texture or evaporative demand through long-term acclimation, an experiment was carried on cotton plants (Gossypium herbaceum L.), where three grades of soil texture and three grades of evaporative demand were applied for the whole life cycle of the plants. Plants were harvested 50 and 90 d (fully grown) after sowing and root length and leaf area measured. At 90 d hydraulic conductance was measured as the ratio of sap flow (measured with sap flow sensors or gravimetrically) and water potential. Results showed that for plants grown at the same evaporative demand, those in sandy soil, where root-specific hydraulic conductance was low, developed more absorbing roots than those grown in heavy-textured soil, where root specific conductance was high. This resulted in the same leaf specific hydraulic conductance (1.8 × 10−4 kg s−1 Mpa−1 m−2) for all three soils. For plants grown in the same sandy soil, those subjected to strong evaporative demand developed more absorbing roots and higher leaf-specific hydraulic conductance than those grown under mild evaporative demand. It is concluded that when soil texture or atmospheric evaporative demand varies, plants co-ordinate their capacities for liquid phase and vapour phase water transport through long-term acclimation of the hydraulic system, or plastic morphological adaptation of the root/leaf ratio.  相似文献   

13.
隔沟交替灌溉条件下玉米根系形态性状及结构分布   总被引:9,自引:0,他引:9  
为揭示根系对土壤环境的适应机制,研究了隔沟交替灌溉条件下玉米根系形态性状及结构分布。以垄位和坡位的玉米根系为研究对象,利用Minirhizotrons法研究了根系(活/死根)的长度、直径、体积、表面积、根尖数和径级变化及其与土壤水分、土温和水分利用效率(WUE)的相关关系。结果表明,对于活根,在坡位非灌水区域复水后根系平均直径减小,而根系日均生长速率、单位面积土壤根系体积密度、根尖数和表面积均增大,并随灌水区域土壤水分的消退逐渐减小;对于死根,在坡位非灌水区域复水后根系日均死亡速率、根系体积密度、根尖数和表面积变化均减小,其中根系死亡速率和死根直径随土壤水分的消退逐渐降低,而死根体积密度、根尖数和表面积分布随土壤水分降低呈增大趋势;在垄位,根系形态分布趋势与坡位一致,除根系直径与与坡位比较接近外,其他根系形态值均小于坡位。将根系分成4个径级区间分析根系的形态特征,结果表明在根系长度和体积密度分布中以2.5-4.5 mm径级的根系所占比例最大,在根尖数和根系表面积分布中以0.0-2.5 mm径级的根系为主。通过显著性相关分析,死根直径、体积密度、活根表面积等根系形态与土壤含水率、土壤温度和WUE间均存在显著或极显著的正相关关系,部分根系形态指标(如根系的生长速率、活根体积密度)只与坡位土壤含水量、土壤温度具有明显的相关性,表明隔沟交替灌溉对坡位根系形态的调控作用比垄位显著。  相似文献   

14.
Soil stockpiling is a common practice prior to the reclamation of surface mines. In this study, velvetleaf blueberry and Labrador tea plants were grown from seed in fresh soil, stockpiled soil (1 year), and autoclaved stockpiled soil (1 year) obtained from the Canadian boreal forest. After 7 months of growth, the root colonization intensity with ericoid mycorrhizal (ERM) fungi in both plants growing in stockpiled soil was lower compared to plants growing in the fresh soil. The diversity of ERM fungal species in roots also decreased due to soil stockpiling and Pezoloma ericae was absent from the plants growing in stockpiled soil. Changes in the ERM root colonization in plants growing in stockpiled soil were accompanied by decreases in root and shoot dry weights. Leaf chlorophyll, nitrogen, and phosphorus concentrations of velvetleaf blueberry were higher in fresh soil compared to 1‐year stockpiled soil. Plants grown in the autoclaved stockpiled soil became colonized by the thermotolerant ERM fungus Leohumicola verrucosa and showed higher root and shoot biomass compared to the nonautoclaved stockpiled soil. The results point to the importance of ERM fungi for growth of ericaceous plants, even under favorable environmental conditions and adequate fertilization, and suggest that reduced ERM colonization intensity and ERM fungal diversity in roots likely contributed to the negative effects of soil stockpiling on growth of velvetleaf blueberry and Labrador tea.  相似文献   

15.
Degenhardt  Birgit  Gimmler  Hartmut  Hose  Elenor  Hartung  Wolfram 《Plant and Soil》2000,225(1-2):83-94
The distribution of the phytohormone abscisic acid (ABA) between plant and soil and within plants growing on an alkaline substrate has been studied in order to separate the true effect of high soil pH from any effects that might be a result of the high salinity normally observed in alkaline soils. Leaves of a range of plants grown in an alkaline and saline solid substrate (municipal solid waste incinerator bottom slag) exhibited higher ABA levels than leaves of control plants. In contrast, roots of most plants grown on alkaline and saline substrates, particularly those without an exodermis (various species of Fabaceae), had slightly lower than or comparable ABA contents to control roots. However, in corn roots (Zea maysL. cv. Garant FAO 240) which possess a well-developed exodermis, alkaline and saline conditions in the rhizosphere did not reduce the endogenous ABA concentration, because the leaching of ABA from corn roots into the rhizosphere was lower than that from Vicia faba (variety Dreifache Weisse) roots. ABA efflux from corn and Vicia roots into the soil solution was observed only during the first days of the experiments and thereafter became substantially decreased. Because the leaching of ABA from Vicia faba roots into the rhizosphere was higher than that from corn roots, the leaves of Vicia plants grown in alkaline soil at low salinity no longer exhibited an elevated ABA concentration. However, whilst the roots of corn plants grown on desalted slag retained ABA levels that were higher than those of the control, the ABA content of leaves was not significant higher than the controls. For this reason, root ABA retention must be enough to induce tolerance to alkalinity in corn plants and there is no need to implicate changes in ABA concentrations in the aerial parts of the plant as having a role in this tolerance. In alkaline soil substrates, considerable portions of the ABA synthesised in the roots leached out into the soil solution of the rhizosphere according to the anion trap concept. An exodermis substantially reduces this leakage. The transient nature of ABA efflux into the rhizosphere was a result of the fact that the salt stress itself was only a transient phenomenon due to a washout of salt by irrigation. The results match predictions of mathematical models describing the effect of alkaline pH on the distribution of abscisic acid within plants and between roots and the rhizosphere. Species that can retain root ABA in the face of its tendency to leach into the more alkaline compartment are able to tolerate these normally harmful sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The distribution of fine roots and external ectomycorrhizal mycelium of three species of trees was determined down to a soil depth of 55 cm to estimate the relative nutrient uptake capacity of the trees from different soil layers. In addition, a root bioassay was performed to estimate the nutrient uptake capacity of Rb+ and NH4+ by these fine roots under standardized conditions in the laboratory. The study was performed in monocultures of oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) Karst.] on sandy soil in a tree species trial in Denmark. The distribution of spruce roots was found to be more concentrated to the top layer (0–11 cm) than that of oak and beech roots, and the amount of external ectomycorrhizal mycelia was correlated to the distribution of the roots. The uptake rate of [86Rb+] by oak roots declined with soil depth, while that of beech or spruce roots was not influenced by soil depth. In modelling the nutrient sustainability of forest soils, the utilization of nutrient resources in deep soil layers has been found to be a key factor. The present study shows that the more shallow-rooted spruce can have a similar capacity to take up nutrients from deeper soil layers than the more deeply rooted oak. The distribution of roots and mycelia may therefore not be a reliable parameter for describing nutrient uptake capacity by tree roots at different soil depths.  相似文献   

17.
Segregation of roots is frequently observed in competing root systems. However, recently, intensified root growth in response to a neighbouring plant has been described in pot experiments [Gersani M, Brown J S, O'Brien E E, Maina G M and Abramsky Z 2001. J. Ecol. 89, 660–669]. This paper examines whether intense root growth towards a neighbour (aggregation) plays a role in competitive interactions between plant species from open nutrient-poor mid-European sand ecosystems. In a controlled field-competition experiment, root distribution patterns of intra- and interspecific pairs as well as single control plants of Corynephorus canescens, Festuca psammophila, Hieracium pilosella, Hypochoeris radicata and Conyza canadensis were investigated after one growing season. Under intraspecific competition plants tended to segregate their root systems, while under interspecific competition most species tended to aggregate roots towards their neighbours even at the expense of root development at the opposite competition-free side of the target. Preference of a root aggregation strategy over the occupation of competition-free soil in interspecific competition emphasizes the importance of contesting between individuals in relation to mere resource acquisition. It is suggested that in the presence of a competitor the plants might use root aggregation as a defensive reaction to maintain a strong competitive response and exclusive access to the resources of already occupied soil volumes.  相似文献   

18.
Interference at the level of fine roots in the field was studied by detailed examination of fine root distribution in small soil patches. To capture roots as they occur in natural three-dimensional soil space, we used a freezing and slicing technique for microscale root mapping. The location of individual roots intersecting a sliced soil core surface was digitized and the identity of shrub and grass roots was established by a chemical technique. Soil patches were created midway between the shrub, Artemisia tridentata, and one of two tussock grasses, Pseudoroegneria spicata or Agropyron desertorum. Some soil patches were enriched with nutrients and others given only deionized water (control); in addition, patches were located between plants of different size combination (large shrubs with small tussock grasses and small shrubs with large tussock grasses). The abundance of shrub and grass roots sharing soil patches and the inter-root distances of individual fine roots were measured. Total average rooting density in patches varied among these different treatment combinations by only a factor of 2, but the proportion of shrub and grass roots in the patches varied sixfold. For the shrub, the species of grass roots sharing the patches had a pronounced influence on shrub root density; shrub roots were more abundant if the patch was shared with Pseudoroegneria roots than if shared with Agropyron roots. The relative size of plants whose roots shared the soil patches also influenced the proportion of shrub and grass roots; larger plants were able to place more roots in the patches than were the smaller plants. In the nutrient-enriched patches, these influences of grass species and size combination were amplified. At the millimeter- to centimeter-scale within patches, shrub and grass roots tended to segregate, i.e., avoid each other, based on nearest-neighbor distances. At this scale, there was no indication that the species-specific interactions were the result of resource competition, since there were no obvious patterns between the proportion of shrub and grass roots of the two species combinations with microsite nutrient concentrations. Other potential mechanisms are discussed. Interference at the fine-root level, and its species-specific character, is likely an influential component of competitive success, but one that is not easily assessed.  相似文献   

19.
Seedlings of Lotus glaberMill., were grown in a native saline-sodic soil in a greenhouse for 50 days and then subjected to waterlogging for an additional period of 40 days. The effect of soil waterlogging was evaluated by measuring plant growth allocation, mineral nutrition and soil chemical properties. Rhizobiumnodules and mycorrhizal colonisation in L. glaberroots were measured before and after waterlogging. Compared to control plants, waterlogged plants had decreased root/shoot ratio, lower number of stems per plant, lower specific root length and less allocation of P and N to roots. Waterlogged plants showed increased N and P concentrations in plant tissues, larger root crown diameter and longer internodes. Available N and P and organic P, pH and amorphous iron increased in waterlogged soil, but total N, EC and exchangeable sodium were not changed. Soil waterlogging decreased root length colonised by arbuscular mycorrhizal (AM) fungi, arbuscular colonisation and number of entry points per unit of root length colonised. Waterlogging also increased vesicle colonisation and Rhizobium nodules on roots. AM fungal spore density was lower at the end of the experiment in non-waterlogged soil but was not reduced under waterlogging. The results indicate that L. glaber can grow, become nodulated by Rhizobium and colonised by mycorrhizas under waterlogged condition. The responses of L. glaber may be related its ability to form aerenchyma.  相似文献   

20.
Du YX  Pan GX  Li LQ  Hu ZL  Wang XZ 《应用生态学报》2010,21(8):1926-1932
为了解喀斯特生态系统退化过程中树木细根生物量和土壤养分的变化,选择贵州中部喀斯特山地乔木林、灌木林和灌草丛3种植被生态系统,比较分析不同深度(0~5 cm、5~10 cm和10~15 cm)土壤细根数量及其养分情况.结果表明:树木细根主要分布在0~10 cm土层,并随土层加深而减少.在0~10 cm土层中,乔木林、灌木林和灌草丛的活细根生物量分别占0~15 cm总细根生物量的42.78%、56.75%和53.38%,总活细根生物量的83.36%、86.91%和93.79%.不同植被下优势种植物细根生物量存在差异.0~5 cm土层乔木林活细根氮素和磷素储量均显著高于灌草丛和灌木林(P0.05),但灌木林和灌草丛间没有差异;5~10 cm土层乔木林活细根氮和磷储量显著高于灌草丛和灌木林(P0.05),灌木林下又显著高于灌草丛下(P0.05).0~10 cm土层的活细根生物量与植株地上部分生物量呈正相关,植物叶片氮、磷养分含量与细根比根长呈显著的负相关,说明细根的养分储量对地上生物量的建成和生态系统功能的发挥具有重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号