首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the formation of a callosic encasement of the haustorial complex (EHC) and hypersensitive response (HR), which appears to be controlled by both salicylic acid (SA)-dependent and SA-independent defence pathways, as supported by the susceptibility of the pad4/sid2 double mutant to the pathogen. While the broad-spectrum resistance protein RPW8.2 enhances post-penetration resistance against G. cichoracearum UCSC1, a well-adapted powdery mildew pathogen, RPW8.2, is dispensable for post-penetration resistance against G. cichoracearum UMSG1, and its specific targeting to the extrahaustorial membrane is physically blocked by the EHC, resulting in HR cell death. Taken together, the present work suggests an evolutionary scenario for the Arabidopsis-powdery mildew interaction: EHC formation is a conserved subcellular defence evolved in plants against haustorial invasion; well-adapted powdery mildew has evolved the ability to suppress EHC formation for parasitic growth and reproduction; RPW8.2 has evolved to enhance EHC formation, thereby conferring haustorium-targeted, broad-spectrum resistance at the post-invasion stage.  相似文献   

2.
Treatment options for extended-spectrum beta-lactamase-producers   总被引:2,自引:0,他引:2  
A review of antibiotic options for the treatment of infections caused by extended-spectrum beta-lactamase-producing isolates is presented. The use of the third-generation cephalosporin, cefotaxime, for infections caused by isolates producing ceftazidimase-type extended-spectrum beta-lactamases is controversial, despite in vitro susceptibility to the antibiotic in many instances. The fourth-generation cephalosporin, cefipime, although active against most extended-spectrum beta-lactamases, is reported to show a marked inoculum effect. The cephamycins, such as cefoxitin. are generally effective against Enterobacteriaceae producing TEM- and SHV-derived extended-spectrum beta-lactamases, but Klebsella pneumoniae strains are prone to cephamycin resistance as a result of porin loss. The use of beta-lactamase inhibitor combinations is variable. Sulbactam is less effective than clavulanate for the inhibition of SHV-derived extended-spectrum beta-lactamases and a marked inoculum effect has been noted, while the efficacy of tazobactam against SHV-derived extended-spectrum beta-lactamase producers is controversial. Furthermore, extended-spectrum beta-lactamases are often encoded by multi-resistant plasmids carrying genes conferring resistance to aminoglycosides, chloramphenicol, sulfonamides, trimethoprim and other antimicrobials, severely limiting even alternative therapies. Extensive susceptibility testing before the institution of antibiotic therapy is thus vital.  相似文献   

3.
Background:  Helicobacter pylori is a human pathogen responsible for serious diseases including peptic ulcer disease and gastric cancer. The recommended triple therapy included clarithromycin but increasing resistance has undermined its effectiveness. It is therefore important to be aware of the local prevalence of antimicrobial resistance to adjust treatment strategy.
Materials and Methods:  Overall, 530 biopsies were collected between 2004 and 2007. The antimicrobial susceptibility of H. pylori was determined by E-test and molecular methods.
Results:  Among these, 138/530 (26%) strains were resistant to clarithromycin, 324/530 (61%) to metronidazole and 70/530 (13.2%) to ciprofloxacin. Whereas no resistance against amoxicillin and tetracycline was observed, only one strain was resistant to rifampicin. Compared to the patients never treated for H. pylori infection, the prevalence of resistance was significantly higher in patients previously treated (19.1% vs 68% for clarithromycin; 13.2% vs 53.3% for both clarithromycin and metronidazole). The trend analysis revealed an increase of primary resistance to ciprofloxacin between 2004 and 2005 (7.3%) vs 2006–2007 (14.1%) ( p  = .04) and the secondary resistance reached 22.7% in 2007. Interestingly, 27 biopsies (19.6%) contained a double population of clarithromycin-susceptible and -resistant strains.
Conclusions:  The reported high prevalence of clarithromycin and multiple resistances of H. pylori suggest that the empiric therapy with clarithromycin should be abandoned as no longer pretreatment susceptibility testing has assessed the susceptibility of the strain. As culture and antibiogram are not routinely performable in most clinical laboratories, the use of molecular test should be developed to allow a wide availability of pretreatment susceptibility testing.  相似文献   

4.
beta-lactams are the antibiotic compounds most widely used against hospital and community acquired infections. However, resistance has emerged in both Gram-positive and Gram-negative bacteria, limiting their therapeutic efficacy. The choice of appropriate treatment depends on analysis of susceptibility data that indicates a specific mechanism of resistance. Correct interpretation of susceptibility tests permits a rational approach to the resistance problem and selection of alternatives for treatment. The laboratory must first be able to identify accurately microorganisms to the species level and then test a minimum of relevant antimicrobials. beta-lactam resistance in Enterobacteriaceae is mainly due to the production of plasmid or chromosomal encoded beta-lactamases. In Gram-negative non-fermenting bacteria, impermeability and efflux are relatively more important to the treatment selected. In Gram-positive bacteria, resistance mechanisms can involve changes in penicillin-binding proteins (PBPs), production of new PBPs or synthesis of beta-lactamases. The range of therapeutic options must be based on the current status of local resistance mechanisms.  相似文献   

5.
Plants defend themselves against attack from insects and pathogens with various resistance strategies. The jasmonate and salicylate signaling pathways are two induced responses that protect plants against these attackers. Knowledge of the range of organisms that are affected by each response is important for understanding how plants coordinate their defenses against multiple attackers and the generality of effect of different resistance mechanisms. The jasmonate response is known to protect plants against a wide range of insect herbivores; in this study, we examined the role of the jasmonate response in susceptibility to eight pathogens with diverse lifestyles in the laboratory and field. Recent biochemical models suggest that the lifestyle of the pathogen (necrotroph versus biotroph) should predict whether the jasmonate response will be involved in resistance. We tested this by examining the susceptibility of wild-type (cv Castlemart with no known genes for resistance to the pathogens used) and jasmonate-deficient mutant tomato (Lycopersicon esculentum) plants (def1) and by employing rescue treatments of the mutant. Plant susceptibility to five of the eight pathogens we examined was reduced by the jasmonate response, including two bacteria (Pseudomonas syringae and Xanthomonas campestris), two fungi (Verticillium dahliae and Fusarium oxysporum f. sp. lycopersici), and an oomycete (Phytophthora infestans). Susceptibility to three fungi was unaffected (Cladosporium fulvum, Oidium neolycopersici, and Septoria lycopersici). Our results indicate that the jasmonate response reduces damage by a wide range of pathogens from different lifestyles, a result that contrasts with the emerging picture of diseases on Arabidopsis. Thus, the generality of jasmonate-based resistance of tomato challenges the view that ecologically distinct plant parasites are resisted via different mechanisms.  相似文献   

6.
Plant diseases, caused by microbes, threaten world food, feed, and bioproduct security. Plant resistance has not been effectively deployed to improve resistance in plants for lack of understanding of biochemical mechanisms and genetic bedrock of resistance. With the advent of genome sequencing, the forward and reverse genetic approaches have enabled deciphering the riddle of resistance. Invading pathogens produce elicitors and effectors that are recognized by the host membrane-localized receptors, which in turn induce a cascade of downstream regulatory and resistance metabolite and protein biosynthetic genes (R) to produce resistance metabolites and proteins, which reduce pathogen advancement through their antimicrobial and cell wall enforcement properties. The resistance in plants to pathogen attack is expressed as reduced susceptibility, ranging from high susceptibility to hypersensitive response, the shades of gray. The hypersensitive response or cell death is considered as qualitative resistance, while the remainder of the reduced susceptibility is considered as quantitative resistance. The resistance is due to additive effects of several resistance metabolites and proteins, which are produced through a network of several hierarchies of plant R genes. Plants recognize the pathogen elicitors or receptors and then induce downstream genes to eventually produce resistance metabolites and proteins that suppress the pathogen advancement in plant. These resistance genes (R), against qualitative and quantitative resistance, can be identified in germplasm collections and replaced in commercial cultivars, if nonfunctional, based on genome editing to improve plant resistance.  相似文献   

7.
Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions.  相似文献   

8.
We have examined the role of the callose synthase PMR4 in basal resistance and β-aminobutyric acid-induced resistance (BABA-IR) of Arabidopsis thaliana against the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Alternaria brassicicola . Compared to wild-type plants, the pmr4-1 mutant displayed enhanced basal resistance against P. syringae , which correlated with constitutive expression of the PR-1 gene. Treating the pmr4-1 mutant with BABA boosted the already elevated levels of PR-1 gene expression, and further increased the level of resistance. Hence, BABA-IR against P. syringae does not require PMR4-derived callose. Conversely, pmr4-1 plants showed enhanced susceptibility to A. brassicicola , and failed to show BABA-IR. Wild-type plants showing BABA-IR against A. brassicicola produced increased levels of JA. The pmr4-1 mutant produced less JA upon A. brassicicola infection than the wild-type. Blocking SA accumulation in pmr4-1 restored basal resistance, but not BABA-IR against A. brassicicola . This suggests that the mutant's enhanced susceptibility to A. brassicicola is caused by SA-mediated suppression of JA, whereas the lack of BABA-IR is caused by its inability to produce callose. A. brassicicola infection suppressed ABA accumulation. Pre-treatment with BABA antagonized this ABA accumulation, and concurrently potentiated expression of the ABA-responsive ABI1 gene. Hence, BABA prevents pathogen-induced suppression of ABA accumulation, and sensitizes the tissue to ABA, causing augmented deposition of PMR4-derived callose.  相似文献   

9.
Heterozygosity at loci affecting resistance against parasites can benefit host fitness. We predict that, in haplodiploid species, haploid males will suffer decreased parasite resistance relative to diploid females. We suggest that elevated susceptibility in haploid males has shaped the evolution of social behaviour in haplodiploid species. Male susceptibility will select for behavioural adaptations that limit males' exposure to pathogens and that limit male transmission of pathogens within and between colonies. The relatedness-asymmetry hypothesis that has been advanced to explain female-only workers does not make these predictions. We review the relevant evidence for genetic effects on parasite resistance in insects and summarize empirical evidence that relates to the haploid-susceptibility hypothesis.  相似文献   

10.
The potential for transmission of antibiotic-resistant enteric zoonotic bacteria from animals to humans has been a public health concern for several decades. Bacteria carrying antibiotic resistance genes found in the intestinal tract of food animals can contaminate carcasses and may lead to food-borne disease in humans that may not respond to antibiotic treatment. It is consequently important to monitor changes in antimicrobial susceptibility of zoonotic and commensal organism; in this context, there are a number of veterinary monitoring programmes that collect bacteria in food-producing animals at slaughter and determine their susceptibility against antibiotics relevant for human medicine. The data generated are part of the risk analysis for potential food-borne transmission of resistance. There has been much debate about the use of fluoroquinolones in veterinary medicine, and so, this review will consider the fluoroquinolone data from two surveys and compare them to national surveillance programmes. At the outset, it must be pointed out that there is, however, a lack of agreement between several programmes on what is meant by the term 'fluoroquinolone resistance' through use of different definitions of resistance and different resistance breakpoints. An additional aim of this paper is to clarify some of those definitions. Despite the debate about the contribution of antibiotic use in veterinary medicine to the overall resistance development in human pathogens, the data suggest that clinical resistance to fluoroquinolones in Escherichia coli and nontyphoidal Salmonella is generally uncommon, except for a few countries. Ongoing surveillance will continue to monitor the situation and identify whether this situation changes within the respective animal populations. For the benefit of both the epidemiologist and the clinician, it would be strongly advantageous that national monitoring surveys report both percentages of clinical resistance and decreased susceptibility.  相似文献   

11.
12.
Biocides (antiseptics and disinfectants) are widely used in hospitals and pharmaceutical industries for contamination control. The emergence of reduced susceptibility to biocides is the major concern and this is caused by various factors, among which plasmid-mediated resistance is common. Many publications describe the antibiotic resistance and mechanisms in a clinical setting. However, there are only limited studies available worldwide addressing the molecular mechanisms of biocide resistance in the pharmaceutical sector. In addition, there is a considerable lack of scientific reports regarding minimum inhibitory concentration (MIC) values of typical biocides against pharmaceutical cleanroom environmental isolates. This review analyses the plasmid-mediated resistance in typical pharmaceutical micro-organisms and prevalence of biocide-resistant genes among common clinical and pharmaceutical isolates. This review discusses the MIC values of biocides in pharmaceutical environmental isolates, indicating the importance of the correlation between the presence or absence of biocide-resistant genes and reduced susceptibility of MIC values. This review recommends that pharmaceutical organizations adopt policies and test methodologies to examine the MICs of common cleanroom biocides against the most common types of cleanroom environmental isolates.  相似文献   

13.
The susceptibility to pesticide was studied in the resistant and sensitive strains of the red spider mite Tetranychus urticae Koch. at different developmental stages. A phase of the maximum sensitivity to the effect of drugs was determined in the mite ontogenesis which coincides with the stage of the spiracle protrusion. Changes in the range of stage susceptibility were followed with respect to the acquisition of resistance against acaricides. 3 types of the ontogenetic reaction of resistant specimens are described which appear to be related to the differences in the physiological mechanisms of resistance against the drugs of different chemical groups.  相似文献   

14.
目的:探讨临床微生物检验和细菌耐药性监测。方法:对临床分离出的致病菌的耐药情况以及敏感性进行回顾分析,检查出各种病菌对各类抗菌药物的敏感率和耐药率,本文以葡萄球菌属、肠杆菌科、非发酵菌的代表菌种的耐药性和敏感性为例。结果:通过选取金黄色葡萄球菌、表皮葡萄球菌、溶血葡萄球菌、大肠埃希菌、肺炎克雷伯菌、铜绿假单胞菌、鲍曼不动杆菌为例进行回顾分析,它们对抗菌药物的耐药率、敏感率具体情况如文中表格所示。结论:临床病原菌的耐药性问题不容忽视,治疗时要根据药物的敏感性和耐药性选择适当的抗菌药物,合理使用抗菌药物,减轻抗菌药物的耐药寿命。  相似文献   

15.
Spores, although often considered metabolically inert, catalyze a variety of reactions. The use of spores instead of mycelium for bioconversions has several advantages. In this paper, we describe the difference in susceptibility of mycelium and spores against toxic substrates and products. A higher resistance of spores toward the toxic effects of bioconversion substrates and products is an advantage that has not been studied in detail until now. This paper shows that spores of Penicillium digitatum ATCC 201167 are on average over 2.5 times more resistant than mycelium toward the toxicity of substrates, intermediates, and products of the geraniol bioconversion pathway. Furthermore, the higher resistance of spores to citral was shown as an advantage in its biotransformation by P. digitatum. Using three different approaches the toxicity of the compounds were tested. The order of toxicity toward P. digitatum was, starting with the most toxic, citral > nerol/geraniol > geranic acid > methylheptenone > acetaldehyde.  相似文献   

16.
DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase.  相似文献   

17.
Representing the major part of the human colon microflora, members of the Bacteroides fragilis group are frequently involved in mixed aerobic and anaerobic infections. Recent studies show an increased resistance of the B. fragilis group against several antimicrobial agents. The aim of the present study was to determine the susceptibility of 87 B. fragilis group strains isolated in 2003/2004 in Western Austria against eight antimicrobial agents by Etest. Furthermore, the resistance patterns were compared with those of 45 B. fragilis group strains isolated in 1992 and referred to the world wide trend towards increased resistance. In 1992 as well as in 2003/2004, all strains were susceptible against metronidazole and imipenem. However, comparing the MIC-values of the B. fragilis group strains collected 1992 with data from 2003/2004, a significant increase in resistance was found for clindamycin (p<0.01). Regarding cefoxitin, a similar trend could be observed. However, this difference was not yet significant (p=0.144). Our findings underline the emerging resistance of the B. fragilis group against antimicrobial agents and underscore the importance of susceptibility testing of anaerobes even in routine laboratories.  相似文献   

18.
Transgenic cotton that produces insecticidal proteins from Bacillus thuringiensis (Bt), often referred to as Bt cotton, is widely grown in many countries. Bt cotton with a single cry1A gene and stacked also with cry2A gene has provided satisfactory protection against the damage by the lepidopteran bollworms, especially the cotton bollworm, Helicoverpa armigera (Hübner) which is considered as a key pest. The baseline susceptibility of the larvae of H. armigera to Cry1Ac and other toxins carried out in many countries has provided a basis for monitoring resistance. There is no evidence of development of field-level resistance in H. armigera leading to the failure of Bt cotton crop anywhere in the world, despite the fact that Bt cotton was grown on the largest ever area of 12.1 million hectares in 2006 and its cumulative cultivation over the last 11 years has surpassed the annual cotton area in the world. Nevertheless, the Bt resistance management has become a necessity to sustain Bt cotton and other transgenic crops in view of potential of the target insects to evolve Cry toxin resistance.  相似文献   

19.
Luijckx P  Fienberg H  Duneau D  Ebert D 《Heredity》2012,108(5):547-551
The influence of host and parasite genetic background on infection outcome is a topic of great interest because of its pertinence to theoretical issues in evolutionary biology. In the present study, we use a classical genetics approach to examine the mode of inheritance of infection outcome in the crustacean Daphnia magna when exposed to the bacterial parasite Pasteuria ramosa. In contrast to previous studies in this system, we use a clone of P. ramosa, not field isolates, which allows for a more definitive interpretation of results. We test parental, F1, F2, backcross and selfed parental clones (total 284 genotypes) for susceptibility against a clone of P. ramosa using two different methods, infection trials and the recently developed attachment test. We find that D. magna clones reliably exhibit either complete resistance or complete susceptibility to P. ramosa clone C1 and that resistance is dominant, and inherited in a pattern consistent with Mendelian segregation of a single-locus with two alleles. The finding of a single host locus controlling susceptibility to P. ramosa suggests that the previously observed genotype-genotype interactions in this system have a simple genetic basis. This has important implications for the outcome of host-parasite co-evolution. Our results add to the growing body of evidence that resistance to parasites in invertebrates is mostly coded by one or few loci with dominance.  相似文献   

20.
Pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), and cabbage seed weevil, Ceutorhynchus assimilis (Paykull) (Coleoptera: Curculionidae), are important pests in the production of European winter oilseed rape, Brassica napus L. (Brassicaceae), which is grown on several million hectares in Europe. Insecticide treatments are common to control both pests once they exceed economic damage thresholds; however, not many chemical classes are available for their control in European oilseed rape. Particularly pollen beetles recently developed high levels of pyrethroid resistance impairing field control at recommended rates in many countries, whereas no resistance is yet reported to another important insecticide, thiacloprid. The major objective of this study was to investigate the spatio‐temporal susceptibility status of pollen beetle against the recently introduced insecticide thiacloprid. From 2009 to 2012 more than 630 populations of pollen beetle collected in 13 countries were monitored for resistance to thiacloprid by using an adult vial test. No shifting to lower susceptibility of pollen beetle to thiacloprid has been observed between 2009 and 2012. Furthermore, we were able to show that pollen beetle larvae are extremely susceptible to thiacloprid, whereas within strains larvae are significantly more resistant than adults to pyrethroids such as lambda‐cyhalothrin. Dose‐response data for thiacloprid against cabbage seed weevil populations collected in 2011 in Germany, Sweden, and Ukraine showed a 10‐fold higher intrinsic sensitivity compared to pollen beetle, and showed only a low variation in response. In addition, we also tested 17 cabbage seed weevil populations collected in five countries against lambda‐cyhalothrin with low variation in response (three‐fold), suggesting full baseline susceptibility and no resistance to pyrethroids. The implications of the data presented for resistance management in coleopteran pests in winter oilseed rape are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号