首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

3.
Recent advances in the development of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) now permit the near routine analysis of oligonucleotides and intact nucleic acids. These developments have led to the use of mass spectrometry (MS) as a detection platform for genomics studies. Among the various uses of mass spectrometry in genomics, applications focused on the characterization of single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs) are particularly well-suited to MALDI or ESI-based analysis. It is predicted that continued developments in methodology and instrumentation will further improve the capabilities of mass spectrometry for nucleic acid analysis.  相似文献   

4.
Ribosomal ribonucleic acid (RNA), transfer RNA and other biological or synthetic RNA polymers can contain nucleotides that have been modified by the addition of chemical groups. Traditional Sanger sequencing methods cannot establish the chemical nature and sequence of these modified-nucleotide containing oligomers. Mass spectrometry (MS) has become the conventional approach for determining the nucleotide composition, modification status and sequence of modified RNAs. Modified RNAs are analyzed by MS using collision-induced dissociation tandem mass spectrometry (CID MS/MS), which produces a complex dataset of oligomeric fragments that must be interpreted to identify and place modified nucleosides within the RNA sequence. Here we report the development of RoboOligo, an interactive software program for the robust analysis of data generated by CID MS/MS of RNA oligomers. There are three main functions of RoboOligo: (i) automated de novo sequencing via the local search paradigm. (ii) Manual sequencing with real-time spectrum labeling and cumulative intensity scoring. (iii) A hybrid approach, coined ‘variable sequencing’, which combines the user intuition of manual sequencing with the high-throughput sampling of automated de novo sequencing.  相似文献   

5.
6.
Biomolecular interaction analysis mass spectrometry (BIA/MS) is a multiplexed analytical technique that utilizes a unique combination of surface plasmon resonance (SPR) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection and analysis of small amounts of proteins residing in complex biological systems. In order to achieve high sensitivity during BIA/MS, certain experimental parameters and sequences of events need to be optimized and maintained. Immobilized ligand density, flow rate and biosensor control (in SPR-BIA) and matrix choice and application (in MALDI-TOF MS) have significant influence on the final outcome of the BIA/MS analysis and, consequently, need to be optimized and carefully controlled. In addition, chip washing and cutting are essential in converting the SPR-active sensor chips into target surfaces amenable to MALDI-TOF MS. Reviewed here are the prerequisites for successfully interfacing SPR-BIA with MALDI-TOF MS.  相似文献   

7.
In the past few years, the emergence of combinatorial chemistry has drawn increasing attention and a great deal of analytical research has been centered around this new methodology. These new methods capable of producing vast numbers of samples, which are in many cases highly complex, demand fast and reliable analytical techniques able to provide high quality information concerning sample compositions. Mass spectrometry (MS) is the method of choice to face these analytical challenges. In particular, the introduction of electrospray ionization (ESI and matrix assisted laser desorption/ionization (MALDI)) have been the driving forces for many of the recent innovations, not only within the fields of the biosciences, but also in combinatorial chemistry. These ionization techniques are extremely versatile for the characterization of both single compound collections and compound mixture collections. The high-throughput capabilities, as well as many possible couplings with separation techniques (HPLC, CE) have been thus facilitated. However, mass spectrometry is not only limited to use as an instrument for synthesis control, but also plays an increasing role in the identification of active compounds from complex libraries. Recently, new initiatives for library analysis and screening have arisen from the application of the latest developments in mass spectrometry, Fourier transform ion cyclotron resonance (FTICR).  相似文献   

8.
Oxysterols are oxygenated forms of cholesterol. This definition can, however, be expanded to include oxygenated derivatives of plant sterols and also of cholesterol precursors. Oxysterols are formed in the first steps of cholesterol metabolism and also from cholesterol by reactive oxygen species. Oxysterols were once thought of as simple intermediates, or side-products, in the conversion of cholesterol to hormonal steroids and bile acids, however, they have subsequently been shown to be biologically active molecules in their own right. In this article we will discuss methods of oxysterol analysis including "classical" gas chromatography-mass spectrometry (GC-MS) methods and more recent liquid chromatography (LC)-MS methods. Our main focus, however, will be on analytical methods based on "charge-tagging" and LC-tandem mass spectrometry (MS/MS or MS(n)) which we have developed over the last decade in our laboratory. Examples will be given of oxysterol analysis in brain, cerebrospinal fluid (CSF) and blood. The advantages and disadvantages of the various methods of oxysterol analysis will be discussed.  相似文献   

9.
Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. This review briefly discusses carbohydrate sample preparation and ionization methods, and highlights recent developments in alternative high-resolution MS/MS strategies, including infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), and electron detachment dissociation (EDD), for carbohydrates with a focus on glycans and proteoglycans from mammalian glycoproteins.  相似文献   

10.
Abstract

The past ten years have been an exciting time in mass spectrometry as a number of important instrumental developments have revolutionized the field, including the analysis of nucleic acid components.1,2 The focus of this talk will be on the impact that new ionization methods, e.g., plasma desorption(PD) and fast atom bombardment(FAB), and new magnet technology (expanded mass range and scan speed capability) have had on the analysis of nucleosides and nucleotides. Results from the speaker's laboratory will be used to illustrate the significance of capillary GC/MS techniques for the separation and analysis of complex mixtures of nucleosides derived from a biological source. In addition, some approaches being developed to overcome current limitations in the FAB analysis of nucleosides and nucleotides will be described. Unfortunately, time does not permit a discussion of other new areas of interest, i.e., LC/MS3 and MS/MS.4  相似文献   

11.
2002年诺贝尔化学奖授予了质谱和核磁共振领域的三位科学家以表彰他们对生物大分子鉴定及结构分析方法做出的贡献.其中两位科学家J.B.Fenn和K.Tanaka分别发展了生物大分子质谱分析的软解吸电离方法;另一科学家K.Wüthrich则将核磁共振技术成功地应用于生物大分子如蛋白质的溶液三维结构测定.他们的研究成果已使质谱和核磁共振技术成为生物大分子强有力的研究手段,极大地促进了生物大分子的研究进程,必将对整个生命科学研究产生深远的影响.  相似文献   

12.
Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial-temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful for the characterization of modified proteins via amino acid sequencing and specific detection of posttranslationally modified amino acid residues. Large-scale, quantitative analysis of proteins by MS/MS is beginning to reveal novel patterns and functions of PTMs in cellular signaling networks and biomolecular structures.  相似文献   

13.
Epstein-Barr virus (EBV)–infected cells express two noncoding RNAs called EBV-encoded RNA (EBER) 1 and EBER2. Despite their high abundance in the nucleus (about 106 copies), the molecular function of these noncoding RNAs has remained elusive. Here, we report that the insertion into EBER1 of an RNA aptamer that binds the bacteriophage MS2 coat protein allows the isolation of EBER1 and associated protein partners. By combining MS2-mediated selection with stable isotope labeling of amino acids in cell culture (SILAC) and analysis by mass spectrometry, we identified AUF1 (AU-rich element binding factor 1)/hnRNP D (heterogeneous nuclear ribonucleoprotein D) as an interacting protein of EBER1. AUF1 exists as four isoforms generated by alternative splicing and is best known for its role in destabilizing mRNAs upon binding to AU-rich elements (AREs) in their 3′ untranslated region (UTR). Using UV crosslinking, we demonstrate that predominantly the p40 isoform of AUF1 interacts with EBER1 in vivo. Electrophoretic mobility shift assays show that EBER1 can compete for the binding of the AUF1 p40 isoform to ARE-containing RNA. Given the high abundance of EBER1 in EBV-positive cells, EBER1 may disturb the normal homeostasis between AUF1 and ARE-containing mRNAs or compete with other AUF1-interacting targets in cells latently infected by EBV.  相似文献   

14.
All aspects of RNA metabolism are regulated by RNA-binding proteins (RBPs) that directly associate with the RNA. Some aspects of RNA biology such as RNA abundance can be readily assessed using standard hybridization technologies. However, identification of RBPs that specifically associate with selected RNAs has been more difficult, particularly when attempting to assess this in live cells. The peptide nucleic acid (PNA)-assisted identification of RBPs (PAIR) technology has recently been developed to overcome this issue. The PAIR technology uses a cell membrane-penetrating peptide (CPP) to efficiently deliver into the cell its linked PNA oligomer that complements the target mRNA sequence. The PNA will then anneal to its target mRNA in the living cell, and then covalently couple to the mRNA-RBP complexes subsequent to an ultraviolet (UV) cross-linking step. The resulting PNA-RNA-RBP complex can be isolated using sense oligonucleotide magnetic beads, and the RBPs can then be identified by mass spectrometry (MS). This procedure can usually be completed within 3 d. The use of the PAIR procedure promises to provide insight into the dynamics of RNA processing, transport, degradation and translation in live cells.  相似文献   

15.
The field of single-cell omics is rapidly progressing. Although DNA and RNA sequencing-based methods have dominated the field to date, global proteome profiling has also entered the main stage. Single-cell proteomics was facilitated by advancements in different aspects of mass spectrometry (MS)-based proteomics, such as instrument design, sample preparation, chromatography and ion mobility. Single-cell proteomics by mass spectrometry (scp-MS) has moved beyond being a mere technical development, and is now able to deliver actual biological application and has been successfully applied to characterize different cell states. Here, we review some key developments of scp-MS, provide a background to the field, discuss the various available methods and foresee possible future directions.  相似文献   

16.
17.
Mass spectrometry: m/z 1983-2008   总被引:1,自引:0,他引:1  
Zhou M  Veenstra T 《BioTechniques》2008,44(5):667-8, 670
While definitely not a new technology, mass spectrometry (MS) has seen incredible growth over the past 25 years. Mass spectrometry has rapidly evolved to the forefront of analytical techniques; its ability to analyze proteins is the major driving force in the field of proteomics. MS instrumentation has increased approximately 5-fold in sensitivity every three years. The level of performance that is achievable with MS today allows scientists to study proteins in ways that were inconceivable a quarter century ago. This review of the history of MS over the past 25 years is timely in that it encompasses two of the biggest developments, electrospray and matrix-assisted laser desorption/ionization (MALDI), which have enabled many of the uses of this technology today.  相似文献   

18.
Identification of proteins in RNA-protein complexes is an important step toward understanding regulation of RNA-based processes. Because of the lack of appropriate methodologies, many studies have relied on the creation of in vitro assembled RNA-protein complexes using synthetic RNA and cell extracts. Such complexes may not represent authentic RNPs as they exist in living cells as synthetic RNA may not fold properly and nonspecific RNA-protein interactions can form during cell lysis and purification processes. To circumvent limitations in current approaches, we have developed a novel integrated strategy namely MS2 in vivo biotin tagged RNA affinity purification (MS2-BioTRAP) to capture bona fide in vivo-assembled RNA-protein complexes. In this method, HB-tagged bacteriophage protein MS2 and stem-loop tagged target or control RNAs are co-expressed in cells. The tight association between MS2 and the RNA stem-loop tags allows efficient HB-tag based affinity purification of authentic RNA-protein complexes. Proteins associated with target RNAs are subsequently identified and quantified using SILAC-based quantitative mass spectrometry. Here the 1.2 kb internal ribosome entry site (IRES) from lymphoid enhancer factor-1 mRNA has been used as a proof-of-principle target RNA. An IRES target was chosen because of its importance in protein translation and our limited knowledge of proteins associated with IRES function. With a conventionally translated target RNA as control, 36 IRES binding proteins have been quantitatively identified including known IRES binding factors, novel interacting proteins, translation initiation factors (eIF4A-1, eIF-2A, and eIF3g), and ribosomal subunits with known noncanonical actions (RPS19, RPS7, and RPL26). Validation studies with the small molecule eIF4A-1 inhibitor Hippuristanol shows that translation of endogenous lymphoid enhancer factor-1 mRNA is especially sensitive to eIF4A-1 activity. Our work demonstrates that MS2 in vivo biotin tagged RNA affinity purification is an effective and versatile approach that is generally applicable for other RNA-protein complexes.  相似文献   

19.
Abstract

Liquid chromatography-mass spectrometry (LC/MS) and tandem mass spectrometry (MS/MS) provide new approaches for structural studies of nucleosides, in the nanogram range, in mixtures. Examples are given of the use of LC/MS for rapid screening of synthesis reaction mixtures, and of MS/MS for the detection and characterization of nucleoside isomers in RNA hydrolysates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号