首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A radioimmunoassay for human epidermal growth factor receptor   总被引:4,自引:0,他引:4  
The development of a radioimmunoassay (RIA) for the human epidermal growth factor receptor solubilized with nonionic detergents which employs iodinated epidermal growth factor (125I-EGF) as the specific ligand is described. A monoclonal antibody (R1) that binds specifically to human EGF receptors [Waterfield, M. D., et al. (1982) J. Cell Biochem. 20, 149-161] was used to separate solubilized receptors saturated with 125I-EGF from free ligand by absorption to protein A-Sepharose, and the bound radioactivity was determined. The RIA was linear when increasing amounts of solubilized membrane protein were added and, when compared to the standard polyethylene glycol assay, was more reproducible. In addition, the background nonspecific binding obtained in the presence of a hundred-fold excess of unlabeled EGF was less in the RIA. Substitution of normal mouse serum for the monoclonal antibody gave very low nonspecific background ligand binding and avoided the use of large amounts of unlabeled EGF in the assay. Two major classes of binding sites for EGF were observed in membrane preparations from the cervical carcinoma cell line A431 or from normal human placental tissue. These were present in approximately equal amounts, with apparent dissociation constants of 4 X 10(-10) and 4 X 10(-9) M. Upon solubilization with the nonionic detergent Triton X-100, only one class of EGF binding sites was detected in both cases, with a dissociation constant of 3 X 10(-8) M. The RIA can be used to monitor receptor purification and for quantitation of receptor number and affinity in various cell types.  相似文献   

2.
The binding characteristics of [125I]nerve growth factor, covalently cross-linked with dimethyl suberimidate, to chick embryonic dorsal root ganglia are indistinguishable from the iodinated native hormone. Both show non-saturability, non-linear Scatchard plots and acceleration of dissociation of hormone-receptor complexes by native hormone which is reflected in the binding constants calculated. These results demonstrate that dimerization of the native hormone at the receptor is not responsible for the negatively cooperative behavior observed for native nerve growth factor. Further, experiments with amino-silylated glass tubes also eliminate interaction between hormone and reaction vessel as an explanation of the non-saturable and multiple affinity properties of the observed binding.  相似文献   

3.
Serum-free medium from batch cultures of Sf9 insect cells was examined for the occurrence of proteins related to the insulin-like growth factor family. We found that the Sf9 cell line constitutively produced and secreted a soluble protein with a MW of 27 kDa that exerted specific binding to human insulin-like growth factor-I (IGF-I) and -II. Moreover, the secreted protein bound human insulin and human proinsulin with higher affinity than IGF-I and -II. The order of affinity to the insulin peptides, determined by competitive inhibition of ligand binding, was: insulin > proinsulin > IGF-I > IGF-II. The dissociation constant (k(d)) for IGF-II was 28.5 +/- 1.7 nM and for insulin 7.2 +/- 1.3 nM, as determined by Scatchard plot analysis. The results suggest that the Sf9 cells produce an insulin binding protein similar to the human insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1).  相似文献   

4.
The interaction of nerve growth factor (NGF) with its receptor on cells of the PC 12 cell line was studied. All experiments were done at 0.5 °C to minimize degradation and processes requiring membrane mobility. Under these conditions, a single class of high affinity binding sites with a dissociation constant of 2.9 × 10?9 M was observed. The number of receptors per cell was 58000. The binding was linear with the number of cells in the assay and was not displaced by proteins other than native nerve growth factor. Trypsin treatment of the cells destroyed the specific binding. The removal of divalent cations had no effect on the binding. Culturing the cells for 2 weeks in NGF prior to assay did not change the receptor number or receptor affinity and there was a similar lack of effect of the density of the culture from which the cells were taken for assay. The present findings are compared with previous studies on the dorsal root ganglia and sympathetic ganglia neurons, and the implication for the use of PC 12 as a model for the study of NGF action are discussed.  相似文献   

5.
Adult rat liver parenchymal cells in primary culture exhibit specific saturable binding of 125I-labeled murine epidermal growth factor (EGF). The Scatchard plot of the binding data obtained at 36 °C was curvilinear yielding two apparent dissociation constants of 1.5 × 10?10m and 1.2 × 10?9m with 27,000 and 57,000 sites per cell, respectively. The binding data obtained at 2 °C yielded a linear Scatchard plot with an apparent dissociation constant of 4.4 × 10?9m and 78,000 sites per cell. Exposure of the hepatocytes to EGF at 36 °C resulted in a loss of EGF binding capacity due to down regulation of receptors. The cells recovered the capacity to bind EGF upon incubation in medium which did not contain EGF; this recovery was inhibited by cycloheximide. The cultures appeared to internalize and degrade bound EGF at 36 °C but not at 2 °C. The degradation of EGF was inhibited by chloroquine, an inhibitor of lysosomal enzymes. These data indicate that liver specifically binds and further processes EGF, and therefore, may be a physiological target tissue for this growth factor.  相似文献   

6.
Human growth hormone binding sites from female rabbit kidney microsomes were solubilized by treatment with the nonionic detergent Triton X-100. The binding of 125I-labelled human growth hormone to the solubilized sites retains many of the properties observed in the particulate fraction, such as saturability, reversibility, high affinity and structural specificity. The association and the dissociation process are time- and temperature-dependent. The association rate constant, k1, is 1.6·107 mol?1·l·min?1 at 25°C, and the dissociation rate constant, k?1, is 2.8·10?4 min?1 at 25°C. Solubilization causes an increase in affinity as well as in binding capacity. Scatchard plots from saturation curves suggest the presence of a single class of binding site with a dissociation equilibrium constant, Kd, of 1.3·10?11 M and a binding capacity of 133 fmol/mg of protein. Similar results were obtained from competition experiments. Specificity studies revealed the lactogenic characteristics of the solubilized sites. The Stokes radii of the free binding sites and of the 125I-labelled human growth hormone-binding site complex, determined on a Sepharose CL-6B column, are 57 and 53 Å, respectively.  相似文献   

7.
Treatment of Swiss mouse 3T3 cells and human epidermoid carcinoma A431 cells with protamine at 37 degrees C increased the 125I-epidermal growth factor (EGF) binding activity at 4 degrees C. The effect of protamine on the increase of 125I-EGF binding activity appeared to be time, temperature, and dose dependent. This up-modulation of 125I-EGF binding by protamine correlated with protamine enhancement of EGF-stimulated mitogenesis, with respect to the magnitude of the effect and the dose response curves. Scatchard plot analyses indicated that protamine induced an increase in numbers of both high and low affinity EGF receptors without affecting their affinities. Protamine also increased functionally active EGF receptors in plasma membranes and solubilized membranes. This was evidenced by Scatchard plot analyses and by a protamine-induced increase of 125I-EGF-EGF receptor complex and an increase in EGF-stimulated phosphorylation of the EGF receptor. Combined with column chromatography of the solubilized EGF receptor on protamine-agarose gel, these results suggest that protamine may increase the EGF receptor number by directly activating cryptic EGF receptors in the plasma membrane.  相似文献   

8.
Estrogen receptor binding studies were performed on cytosol obtained from human benign prostatic hyperplasia (BPH) tissue. Binding assays were done in the absence or presence of various concentrations of phenylmethylsulfonyl fluoride (PMSF). Saturation analysis and Scatchard plots showed that the binding of 17 beta -estradiol to the estrogen receptor (ER) was inhibited by PMSF. The nature of the inhibition appears to be uncompetitive, as determined from double-reciprocal plots. Glycerol density gradient centrifugation analysis also confirmed the results obtained with Scatchard plots. The inhibition observed in the presence of dithiothreitol (DTT) was greater than the inhibition observed in the absence of DTT. The maximum number of binding sites (Bmax) observed in our present study was 59.1 +/- 34.1 fmol/mg protein with an equilibrium dissociation constant (KD) of 2.2 +/- 2.2 nM. Our study indicates that PMSF significantly affects 17 beta -estradiol binding to ER and consequently alters the estimation of ER in Human BPH.  相似文献   

9.
PC12 cells, which differentiate morphologically and biochemically into sympathetic neruonlike cells in response to nerve growth fact, also respond to epidermal growth factor. The response to epidermal growth factor is similar in certain respects to the response to nerve growth fact. Both peptides produce rapid increases in cellular adhesion and 2-deoxyglucose uptake and both induce ornithine decarboxylase. But nerve growth factor causes a decreased cell proliferation and a marked hypertrophy of the cells. In contrast, epidermal growth factor enhances cell proliferation and does not cause hypertrophy. Nerve growth factor induces the formation of neuritis; epidermal growth factor does not. When both factors are presented simultaneously, the cells form neurites. Furthermore, the biological response to epidermal growth fact, as exemplified by the induction of ornithine decarboxylase, is attenuated by prior treatment of the cells with nerve growth factor. PC12 cells have epidermal growth factor receptors. The binding of epidermal growth factor to these receptors is rapid and specific, and exhibits an equilibrium constant of 1.9 x 10(-9) M. Approximately 80,000 receptors are present per cell, and this number is independent of cell density. Treatment of the cells with nerve growth factor reduces the amount of epidermal growth factor binding by at least 80 percent. The decrease in receptor binding begins after approximately 12-18 h of nerve growth factor treatment and is complete within 3 d. Scratchard plots indicate that the number of binding sites decreases, not the affinity of the binding sites for epidermal growth factor.  相似文献   

10.
We have identified high and low affinity insulin-like growth factor I (IGF I)-binding sites with mean dissociation constants of 0.37 and 6.25 nM, respectively, in solubilized placental membranes. We have separated these sites and purified the high affinity IGF I receptor 1,300-fold, with an overall yield of 9.9%, using wheat germ agglutinin-Sepharose chromatography, insulin affinity chromatography, and IGF I affinity chromatography. The Scatchard plot of IGF I binding to the high affinity receptor is linear, suggesting the purification of a single homogeneous class of binding sites. Insulin is two orders of magnitude less effective than IGF I in competitively inhibiting IGF I binding to this receptor. The high affinity IGF I receptor is composed of alpha and beta subunits with apparent molecular weights of 135,500 and 96,200, respectively. IGF I at concentrations of greater than or equal to 50 ng/ml stimulates autophosphorylation of the beta subunit of the purified high affinity receptor 4.6-fold. Low affinity IGF I-binding sites run through the IGF I affinity column or are eluted from the insulin affinity column. The separation of IGF I receptors with different binding affinities by sequential affinity chromatography will make it possible to examine directly the determinants of receptor affinity.  相似文献   

11.
The receptor for nerve growth factor (NGF) has been purified to near homogeneity from octylglucoside extracts of A875 melanoma cell membranes by the use of repetitive affinity chromatography on NGF-Sepharose. Elution of purified receptor (NGF receptor) was accomplished with 0.15 M NaCl, pH 11.0, containing phosphatidylcholine and octylglucoside. Chromatography on two columns of NGF-Sepharose yielded a 1500-fold purification of the receptor, as assessed by 125I-NGF binding, and permitted recovery of 9% of the total binding activity in the soluble extract. Scatchard analysis of equilibrium binding of 125I-NGF provided similar Kd values for NGF receptors in soluble extracts of A875 membranes (2.2 nM) and with purified NGF receptor (3.1 nM). Examination of NGF receptor after electrophoresis on sodium dodecyl sulfate-polyacrylamide gels revealed the presence of two major peptides, of Mr = 85,000 and Mr = 200,000. Affinity labeling experiments, done with 125I-NGF and A875 cells, soluble extracts of A875 cell membranes, and purified receptor, show that both of these components of the NGF receptor can be specifically cross-linked to 125I-NGF.  相似文献   

12.
Relationship among types of nerve growth factor receptors on PC12 cells   总被引:3,自引:0,他引:3  
We analyzed the kinetics and thermodynamics of 125I-nerve growth factor (125I-NGF) binding to NGF-receptor on PC12 cells. We used conditions of pseudo-first order kinetics and techniques to quantitate internalized complexes, "slow" or high affinity binding complexes, and cell surface "fast" or low affinity complexes. Two possible models were examined: binding to two independent receptors at the cell surface (i.e. high and low affinity forms of NGF-receptor) and a model for consecutive formation of fast, low affinity binding followed by slow, high affinity binding or internalization. Our data are consistent with the consecutive model only. The rates of association and dissociation of NGF with slow, high affinity sites and internalized, acid wash-resistant sites are indistinguishable from each other. We also analyzed, in detail, the two assays primarily used to distinguish slow binding complexes from internalized complexes. Scatchard analysis of total binding and dissociation of pre-equilibrated 125I-NGF in the presence of unlabeled NGF at high concentration (cold wash). Neither of these assays shows any evidence that the slow, high affinity binding step is different from internalization of the 125I-NGF-receptor complex. Based on this analysis, there are only two detectable forms of NGF-receptor on PC12 cells: complexes on the surface of the cells with a binding affinity of 0.5 nM at 37 degrees C and complexes internalized by the cells. Furthermore, the data are consistent with a model in which NGF-receptor is internalized constitutively and independently of occupancy by NGF. We also examined the fate of internalized 125I-NGF. In the first 60 min after contact with PC12 cells, no degradation of 125I-NGF was observed. Moreover, a significant amount of 125I-NGF recirculates to the cell surface and is released as intact, Mr = 13,000 NGF. The cells were also stimulated by NGF in a primary neurite outgrowth assay with an ED50 of 2-16 pM under conditions of low initial cell numbers in a large extracellular volume of NGF-containing medium. Thus, low level occupancy of the cell surface receptors, Kd = 0.5 nM, for several days is sufficient to stimulate neurite outgrowth. This indicates the presence of spare NGF-receptors on the surface PC12 cells.  相似文献   

13.
Microsomal membranes from A875 human melanoma cells contain nerve growth factor receptors (NGF-receptors) which appear to belong to a single class with homogeneous binding properties, as determined by Scatchard plots. NGF-receptors in these membrane preparations are also uniformly highly sensitive to tryptic proteolysis, and 125I-NGF bound to NGF-receptor in these membranes is rapidly dissociated in the presence of a high concentration of unlabeled NGF. However, analysis of 125I-NGF dissociation kinetics indicated that two classes of NGF-receptor were present in these membranes. Thus, NGF-receptors can express either high or low affinity trypsin-sensitive states in addition to the high affinity trypsin resistant NGF-receptor state described previously (Buxser, S. E., Kelleher, D. J., Watson, L., Puma, P., and Johnson, G. L. (1983) J. Biol. Chem. 258, 3741-3749). The high affinity trypsin-sensitive and low affinity trypsin-sensitive states correlate with 200- and 90-kDa 125I-NGF X NGF-receptor complexes observed in photoaffinity cross-linking experiments. The absence of differences in peptide maps generated from the two sizes of NGF-receptor proteins together with structural and binding data strongly indicates that the 200-kDa NGF-receptor protein is a complex, probably a dimer, consisting of two 80-kDa NGF-receptor proteins associated with a single beta-NGF dimeric molecule. A model is proposed which relates structural states of NGF-receptors with specific receptor binding properties. The model provides an alternative explanation for binding phenomena previously attributed to negative cooperativity.  相似文献   

14.
To investigate the role of receptor aggregation in EGF binding, we construct a mathematical model describing receptor dimerization (and higher levels of aggregation) that permits an analysis of the influence of receptor aggregation on ligand binding. We answer two questions: (a) Can Scatchard plots of EGF binding data be analyzed productively in terms of two noninteracting receptor populations with different affinities if EGF induced receptor aggregation occurs? No. If two affinities characterize aggregated and monomeric EGF receptors, we show that the Scatchard plot should have curvature characteristic of positively cooperative binding, the opposite of that observed. Thus, the interpretation that the high affinity population represents aggregated receptors and the low affinity population nonaggregated receptors is wrong. If the two populations are interpreted without reference to receptor aggregation, an important determinant of Scatchard plot shape is ignored. (b) Can a model for EGF receptor aggregation and EGF binding be consistent with the "negative curvature" (i.e., curvature characteristic of negatively cooperative binding) observed in most Scatchard plots of EGF binding data? Yes. In addition, the restrictions on the model parameters required to obtain negatively curved Scatchard plots provide new information about binding and aggregation. In particular, EGF binding to aggregated receptors must be negatively cooperative, i.e., binding to a receptor in a dimer (or higher oligomer) having one receptor already bound occurs with lower affinity than the initial binding event. A third question we consider is whether the model we present can be used to detect the presence of mechanisms other than receptor aggregation that are contributing to Scatchard plot curvature. For the membrane and cell binding data we analyzed, the best least squares fits of the model to each of the four data sets deviate systematically from the data, indicating that additional factors are also important in shaping the binding curves. Because we have controlled experimentally for many sources of receptor heterogeneity, we have limited the potential explanations for residual Scatchard plot curvature.  相似文献   

15.
The insulin receptor was solubilized from turkey erythrocyte membranes by extraction with 1% beta-octylglucopyranoside. Insulin binding was enhanced when the solubilized material was reconstituted in phospholipid vesicles. The affinity of the reconstituted vesicles for various insulins was similar to that of the intact membranes: porcine insulin greater than proinsulin greater than desoctapeptide insulin. A curvilinear Scatchard plot was obtained for insulin binding to the reconstituted system at 15 degrees C. A high affinity association constant of 1.4 x 10(9) M-1 was obtained from the Scatchard plot. This is a four-fold increase over the value for the turkey erythrocyte membrane, which contains more highly saturated phospholipids. This suggests that the insulin receptor may be sensitive to the lipid composition of the membranes in which it is embedded.  相似文献   

16.
Spleen cells from BALB/c mice immunized with a plasma membrane-enriched fraction from rabbit sympathetic ganglia were fused with the mouse myeloma NS1. A hybrid clone was obtained that produced monoclonal antibody directed against the receptor for nerve growth factor (NGF). The antibody, identified as IgG, was able to immunoprecipitate solubilized NGF receptor in the presence or absence of bound NGF. The antibody bound specifically to sympathetic membranes with high affinity but did not affect the binding of 125I-NGF to its receptor in sympathetic or sensory neurons or PC12 cells.  相似文献   

17.
1. Receptor binding for epidermal growth factor (EGF) in rat buccal mucosa was characterized. Binding of [125I]EGF to rat buccal mucosa was time, temperature, cell number and [125I]EGF concentration dependent. 2. The [125I]EGF binding was reversible and specific. Unlabeled EGF competed for binding to buccal mucosal cells with an IC50 of 1.25 nM, whereas insulin failed to compete. 3. Scatchard analysis of the binding data revealed a curvilinear plot with dissociation constants of 3.39 nM and 2.14 microM, and binding capacities of 1.23 x 10(4) and 3.38 x 10(5) receptors per cell for high and low affinity sites, respectively. 4. Crosslinking of [125I]EGF to buccal mucosa followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one major protein with Mw 170,000 which shares similar molecular weight with other known EGF receptors from different tissues and species. 5. The study is the first report to provide biochemical parameters of the specific EGF receptors in rat buccal mucosa.  相似文献   

18.
The structural interaction of the epidermal growth factor (EGF) receptor and the cytoskeleton of A431 cells has been studied using a monoclonal anti-EGF receptor antibody. This has been done with immunogold labeling using a variety of electron microscopical preparation procedures and EGF binding studies. By providing an image of the membrane-associated cytoskeleton, the dry cleavage method reveals a preferential localization of EGF receptors superimposed upon cytoskeletal filaments. The colocalization of gold particles with cytoskeletal filaments is not affected when pre-labeled cells are extracted with the non-ionic detergent Triton X-100, as visualized by dry cleavage. Using surface replication, this treatment results in visualization of the cytoskeleton. In these latter preparations, it is also observed that EGF receptor-coupled gold particles remain associated with cytoskeletal elements. Moreover, Triton extraction performed before immunogold labeling of EGF receptors demonstrates that isolated cytoskeletons contained binding sites for anti-EGF receptor antibodies. Using stereo micrographs of replica's obtained from these isolated cytoskeletons, it is shown that gold-labeled EGF receptors are exclusively present on the cortical membrane-associated region of the cytoskeleton and not on more intracellular-located filaments. Scatchard analysis of EGF binding to cells fixed with glutaraldehyde and treated with Triton X-100 before and after EGF binding indicates that a high affinity EGF binding site is associated with the Triton X-100 insoluble cytoskeleton.  相似文献   

19.
PC12 is a nerve growth factor (NGF) responsive cell line which exhibits two classes of NGF receptors distinguishable by different kinetic rate constants, sensitivity to trypsin and resistance to Triton detergent solubilization. Whereas incubation of PC12 cells with wheat germ agglutinin (WGA) prior to addition of 125I-NGF inhibits binding of NGF to both classes of receptors, treatment with WGA subsequent to incubation with NGF does not inhibit NGF binding but causes the class of NGF receptors which exhibit rapid or "Fast" dissociation kinetics prior to lectin treatment to be converted to the form which exhibits "Slow" dissociation kinetics. This WGA-mediated receptor conversion is lectin specific, blocked by N-acetyl-D-glucosamine, occurs at similar rates at 4 and 37 degrees C, and is not impaired by a metabolic poison. NGF receptors converted by WGA, like pre-existing Slow receptors, are resistant to trypsinization and remain associated to Triton X-100 extracted "cytoskeletons." Very similar results were obtained for NGF receptors on a human melanoma cell line A875. These results suggest that Fast and Slow receptors are two interconvertible forms of a single protein, rather than distinct proteins. The significance of the generality of these properties for NGF receptors from diverse species and cell types is discussed.  相似文献   

20.
In PC12 cells, retinoic acid (RA) stimulates the expression of p75NGFR, a component of the nerve growth factor (NGF) receptor, as indicated by a rapid increase in p75NGFR mRNA, an increase in the binding of 125I-labeled NGF to p75NGFR, and an increase in the binding of NGF to low affinity sites. RA-treated cells are more sensitive to NGF, but not to either fibroblast growth factor or phorbol 12-myristate 13-acetate, showing that RA has a specific effect on the responsiveness of PC12 cells to NGF. Exposure to RA leads neither to an increase in the expression of mRNA for trk, another component of the NGF receptor, nor to an increase in binding to high affinity receptors, suggesting that an increase in the expression of p75NGFR is sufficient to make cells more sensitive to NGF. This work suggests that, in addition to having direct effects on gene expression, RA can indirectly modulate differentiation of neurons by modifying their expression of cell surface receptors to peptide growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号