首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photoautotrophic organisms, the major agent of inorganic carbon fixation into biomass, convert light energy into chemical energy. The first step of photosynthesis consists of the absorption of solar energy by pigments binding protein complexes named photosystems. Within photosystems, a family of proteins called Light Harvesting Complexes (LHC), responsible for light harvesting and energy transfer to reaction centers, has evolved along with eukaryotic organisms. Besides light absorption, these proteins catalyze photoprotective reactions which allowed functioning of oxygenic photosynthetic machinery in the increasingly oxidant environment. In this work we review current knowledge of LHC proteins serving Photosystem II. Balance between light harvesting and photoprotection is critical in Photosystem II, due to the lower quantum efficiency as compared to Photosystem I. In particular, we focus on the role of each antenna complex in light harvesting, energy transfer, scavenging of reactive oxygen species, chlorophyll triplet quenching and thermal dissipation of excess energy. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

2.
Electron microscopy of monomeric and trimeric forms of the reaction centre of photosystem I from the thermophilic cyanobacterium Phormidium laminosum has allowed the construction of a three-dimensional model describing the shape of the complex. The trimeric form of the Photosystem I reaction centre complex was found to have a very regular shape corresponding to a rounded equilateral triangle with edges ˜18 nm long and a thickness of ˜6 nm. A distinctive chiral arrangement of the three reaction centres in the trimer could be observed on one face of the complex, whereas the opposing face appeared to be smooth with no distinctive internal features. The monomeric reaction centre is roughly pearshaped, with a length of ˜15 nm and a width of ˜9 nm. A thickness of 6 nm is assumed from comparison with the trimer. It is predicted to lie with its shortest axis spanning the membrane. A double-lobed structure, with one lobe larger than the other, was occasionally observed for the monomeric reaction centre. No experimental evidence could be obtained for the existence of the trimeric form in the membrane. The formation of the trimeric form after detergent extraction is suggested. The trimeric form was found to be more stable than the monomeric form in solutions containing anionic and non-ionic detergents.  相似文献   

3.
Xanthophylls have a crucial role in the structure and function of the light harvesting complexes of photosystem II (LHCII) in plants. The binding of xanthophylls to LHCII has been investigated, particularly with respect to the xanthophyll cycle carotenoids violaxanthin and zeaxanthin. It was found that most of the violaxanthin pool was loosely bound to the major complex and could be removed by mild detergent treatment. Gentle solubilization of photosystem II particles and thylakoids allowed the isolation of complexes, including a newly described oligomeric preparation, enriched in trimers, that retained all of the in vivo violaxanthin pool. It was estimated that each LHCII monomer can bind at least one violaxanthin. The extent to which different pigments can be removed from LHCII indicated that the relative strength of binding was chlorophyll b > neoxanthin > chlorophyll a > lutein > zeaxanthin > violaxanthin. The xanthophyll binding sites are of two types: internal sites binding lutein and peripheral sites binding neoxanthin and violaxanthin. In CP29, a minor LHCII, both a lutein site and the neoxanthin site can be occupied by violaxanthin. Upon activation of the violaxanthin de-epoxidase, the highest de-epoxidation state was found for the main LHCII component and the lowest for CP29, suggesting that only violaxanthin loosely bound to LHCII is available for de-epoxidation.  相似文献   

4.
Using freeze-fracture electron microscopy we have recently shown that non-photochemical quenching (NPQ), a mechanism of photoprotective energy dissipation in higher plant chloroplasts, involves a reorganization of the pigment-protein complexes within the stacked grana thylakoids.1 Photosystem II light harvesting complexes (LHCII) are reorganized in response to the amplitude of the light driven transmembrane proton gradient (ΔpH) leading to their dissociation from photosystem II reaction centers and their aggregation within the membrane.1 This reorganization of the PSII-LHCII macrostructure was found to be enhanced by the formation of zeaxanthin and was associated with changes in the mobility of the pigment-protein complexes therein.1 We suspected that the structural changes we observed were linked to the ΔpH-induced changes in thylakoid membrane thickness that were first observed by Murikami and Packer.2,3 Here using thin-section electron microscopy we show that the changes in thylakoid membrane thickness do not correlate with ΔpH per se but rather the amplitude of NPQ and is thus affected by the de-epoxidation of the LHCII bound xanthophyll violaxanthin to zeaxanthin. We thus suggest that the change in thylakoid membrane thickness occurring during NPQ reflects the conformational change within LHCII proteins brought about by their protonation and aggregation within the membrane.Key words: nonphotochemical quenching, photoprotection, LHCII, photosystem II, thylakoid membrane  相似文献   

5.
6.
Vasil'ev S  Bruce D 《The Plant cell》2004,16(11):3059-3068
The efficiency of oxygenic photosynthesis depends on the presence of core antenna chlorophyll closely associated with the photochemical reaction centers of both photosystem II (PSII) and photosystem I (PSI). Although the number and overall arrangement of these chlorophylls in PSII and PSI differ, structural comparison reveals a cluster of 26 conserved chlorophylls in nearly identical positions and orientations. To explore the role of these conserved chlorophylls within PSII and PSI we studied the influence of their orientation on the efficiency of photochemistry in computer simulations. We found that the native orientations of the conserved chlorophylls were not optimal for light harvesting in either photosystem. However, PSII and PSI each contain two highly orientationally optimized antenna chlorophylls, located close to their respective reaction centers, in positions unique to each photosystem. In both photosystems the orientation of these optimized bridging chlorophylls had a much larger impact on photochemical efficiency than the orientation of any of the conserved chlorophylls. The differential optimization of antenna chlorophyll is discussed in the context of competing selection pressures for the evolution of light harvesting in photosynthesis.  相似文献   

7.
Non-photochemical quenching (NPQ) protects plants against photodamage by converting excess excitation energy into harmless heat. In vitro aggregation of the major light-harvesting complex (LHCII) induces similar quenching, the molecular mechanism of which is frequently considered to be the same. However, a very basic question regarding the aggregation-induced quenching has not been answered yet. Are excitation traps created upon aggregation, or do existing traps start quenching excitations more efficiently in aggregated LHCII where trimers are energetically coupled? Time-resolved fluorescence experiments presented here demonstrate that aggregation creates traps in a significant number of LHCII trimers, which subsequently also quench excitations in connected LHCIIs.  相似文献   

8.
Photosystem II has been purified from a transplastomic strain of Nicotiana tabacum according to two different protocols. Using the procedure described in Piano et al. (Photosynth Res 106:221–226, 2010) it was possible to isolate highly active PSII composed of monomers and dimers but depleted in their PsbS protein content. A “milder” procedure than the protocol reported by Fey et al. (Biochim Biophys Acta 1777:1501–1509, 2008) led to almost exclusively monomeric PSII complexes which in part still bind the PsbS protein. This finding might support a role for PSII monomers in higher plants.  相似文献   

9.
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.  相似文献   

10.
M R?gner  D A Chisholm  B A Diner 《Biochemistry》1991,30(22):5387-5395
Two mutants of Synechocystis PCC 6803 lacking the psbC gene product CP43 were constructed by site-directed mutagenesis. Analysis of cells and thylakoid membranes of these mutants indicates that PS II reaction centers accumulate to a concentration of about 10% of that of WT cells. PS II core complexes isolated from mutants lacking the CP43 subunit show light-driven electron transfer from the secondary electron donor Z to the primary quinone electron acceptor QA with a quantum yield similar to that of wild type, indicating that CP43 is not required for binding or function of QA. The use of mutants for the removal of CP43 thus avoids the loss of QA function associated with biochemical extraction of CP43 from intact core complexes. Both absorbance and fluorescence emission maxima of the mutant complexes show a blue shift in comparison to the WT PS II core complex, indicating that the absorbance spectrum of CP43 is red-shifted relative to that of the remainder of the core complex. The antenna size of these CP43-less complexes is about 70% of that of WT, indicating that approximately 15 chlorophyll molecules are bound by CP43. The molecular mass of the PS II complex, including the detergent shell, shifts from 310 +/- 15 kDa in WT to 285 +/- 15 kDa in the CP43-less mutants.  相似文献   

11.
A number of ruthenium complexes were tested for their ability to induce filamentation in Escherichia coli. These included monomeric and dimeric complexes with ruthenium in the II or III oxidation states, as well as mixed-valence complexes with ruthenium in the (II,III) oxidation states. In general, dimeric mixed-valence Ru(II,III) complexes were the most active class of compound, although some complexes of this type were relatively inactive. These were pyrazine- or bipyridyl-bridged complexes which are known to involve strong metal-ligand interaction, which stabilizes the Ru(II) oxidation state. Some Ru(III) complexes were also significantly active in induction of filamentous growth in E. coli. One of these was [Ru(NH3)5Cl]Cl2, which did not inhibit electron transport, Mg2+-ATPase activity or DNA synthesis in E. coli, but like [Ru2(NH3)6Br3]Br2 X H2O was a potent inhibitor of respiration-driven calcium transport in the organism. Filament-inducing activity of the complex was reduced in the presence of NaCl, but not in the presence of added Ca2+, ethanol, calcium pantothenate, or E. coli 'division promoting extract'. This behaviour is also similar to that of [Ru2(NH3)6Br3]Br2 X H2O. It is suggested that both complexes may induce filamentation in E. coli by a common mechanism, which may involve interference with calcium metabolism, or a wall or membrane target, rather than interaction with DNA.  相似文献   

12.
Reaction center triplet states in photosystem I and photosystem II   总被引:3,自引:0,他引:3  
A photosystem I (PS I) particle has been prepared by lithium dodecyl sulfate digestion which lacks the acceptor X, and iron-sulfur centers B and A. Illumination of these particles at liquid helium temperature results in the appearance of a light-induced spin-polarized triplet signal observed by EPR. This signal is attributed to the triplet state of P-700, the primary donor, formed by recombination of the light induced radical pair P-700+ A1- (where A1 is the intermediate acceptor). Formation of the triplet does not occur if P-700 is oxidized or if A1 is reduced, prior to the illumination. A comparison of the P-700 triplet with that of P-680, the primary donor of Photosystem II, shows several differences. (1) The P-680 triplet is 1.5 mT (15 G) wider than the P-700 triplet. This is reflected by the zero-field splitting parameters, which indicate that P-700 is a slightly larger species than P-680. The zero-field splitting parameters do not indicate that either P-700 or P-680 are dimeric. (2) The P-700 triplet is induced by red and far-red light, while the P-680 triplet is induced only by red light. (3) The temperature dependences of the P-700 triplet and the P-680 triplet are different.  相似文献   

13.
We have characterized a xanthophyll binding site, called V1, in the major light harvesting complex of photosystem II, distinct from the three tightly binding sites previously described as L1, L2, and N1. Xanthophyll binding to the V1 site can be preserved upon solubilization of the chloroplast membranes with the mild detergent dodecyl-alpha-d-maltoside, while an IEF purification step completely removes the ligand. Surprisingly, spectroscopic analysis showed that when bound in this site, xanthophylls are unable to transfer absorbed light energy to chlorophyll a. Pigments bound to sites L1, L2, and N1, in contrast, readily transfer energy to chlorophyll a. This result suggests that this binding site is not directly involved in light harvesting function. When violaxanthin, which in normal conditions is the main carotenoid in this site, is depleted by the de-epoxidation in strong light, the site binds other xanthophyll species, including newly synthesized zeaxanthin, which does not induce detectable changes in the properties of the complex. It is proposed that this xanthophyll binding site represents a reservoir of readily available violaxanthin for the operation of the xanthophyll cycle in excess light conditions.  相似文献   

14.
Significance of molecular crowding in grana thylakoids of higher plants on photosystem II function was studied by 'titrating' the naturally high protein density by fusing unilamellar liposomes of the native lipid mixture with isolated grana membranes (BBY). The incorporation of lipids was monitored by equilibrium density gradient centrifugation and two-dimensional thin layer chromatography. The excitonic coupling between light-harvesting (LHC) II and photosystem (PS) II was analysed by chlorophyll a fluorescence spectroscopy. The fluorescence parameters Fv/Fm and Fo clearly depend on the protein density indicating the importance of molecular crowding for establishing an efficient excitonic protein network. In addition the strong dependency of Fo on the protein density reveals weak interactions between LHCII complexes which could be important for dynamic adjustment of the photosynthetic apparatus in higher plants.  相似文献   

15.
In cyanobacteria, solubilization of thylakoid membranes by detergents yields both monomeric and trimeric Photosystem I (PS I) complexes in variable amounts. We present evidence for the existence of both monomeric and trimeric PS I in cyanobacterial thylakoid membranes with the oligomeric state depending in vitro on the ion concentration. At low salt concentrations (i.e.10 mM MgSO4) PS I is mainly extracted as a trimer from these membranes and at high salt concentrations (i.e.150 mM MgSO4) nearly exclusively as a monomer, irrespective of the type of salt used (i.e. mono- or bivalent ions) and the temperature (i.e. 4°C or 20°C). Once solubilized, the PS I trimer is stable over a wide range of ion concentrations (i.e. beyond 0.5 M). A model is presented which suggests a monomer-oligomer equilibrium of PS I, but also of PS II and the cyt. b6/f-complex in the cyanobacterial thylakoid membrane. The possible physiological role of this equilibrium in the regulation of state transitions is discussed.Abbreviations -DM dodecyl--D-maltoside - Chl chlorophyll - cyt. b6f cytochrome b6f complex - EM electron microscopy - HPLC high performance liquid chromatography - LDAO N, N-dimethyl-N-dodecyl amine oxide - MES 4-morpholino ethane sulfonic acid - PAGE polyacrylamide gel electrophoresis - PBS phycobilisome - PS photosystem - SDS sodium dodecyl sulfate - 2D two dimensional - 3D three dimensional  相似文献   

16.
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.  相似文献   

17.
Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.  相似文献   

18.
Christen G  Steffen R  Renger G 《FEBS letters》2000,475(2):103-106
This study presents the first report on delayed fluorescence (DF) emitted from spinach thylakoids, D1/D2/Cytb-559 preparations and solubilized light harvesting complex II (LHCII) in the ns time domain after excitation with saturating laser flashes. The use of a new commercially available multichannel plate with rapid gating permitted a sufficient suppression of detector distortions due to the strong prompt fluorescence. The following results were obtained: (a) in dark-adapted thylakoids, the DF amplitudes at 100 ns and 5 micros after each flash of a train of saturating actinic pulses exhibit characteristic period four oscillations of opposite sign: the DF amplitudes at 100 ns oscillate in the same manner as the quantum yield of prompt fluorescence, whereas those at 5 micros resemble the oscillation of the micros kinetics of P680(.) reduction in samples with an intact water oxidizing complex, (b) the quantum yield of total DF emission in the range up to a few micros is estimated to be <10(-4) for thylakoids, (c) the DF of D1/D2/Cytb-559 exhibits a monophasic decay with tau approximately 50 ns, (d) DF emission is also observed in isolated LHCII with biphasic decay kinetics characterized by tau values of 65 ns and about 800 ns, (e) in contrast to thylakoids, the amplitudes of DF in D1/D2/Cytb-559 preparations and solubilized LHCII do not exhibit any oscillation pattern and (f) all spectra of DF from the different sample types are characteristic for emission from the lowest excited singlet state of chlorophyll a. The implications of these findings and problems to be addressed in future research are briefly discussed.  相似文献   

19.
We have previously demonstrated (Armond, P. A., C. J. Arntzen, J.-M. Briantais, and C. Vernotte. 1976. Arch. Biochem. Biophys. 175:54-63; and Davis, D. J., P. A. Armond, E. L. Gross, and C. J. Arntzen. 1976. Arch. Biochem. Biophys. 175:64-70) that pea seedlings which were exposed to intermittent illumination contained incompletely developed chloroplasts. These plastids were photosynthetically competent, but did not contain grana. We now demonstrate that the incompletely developed plastids have a smaller photosynthetic unit size; this is primarily due to the absence of a major light-harvesting pigment-protein complex which is present in the mature membranes. Upon exposure of intermittent- light seedlings to continuous white light for periods up to 48 h, a ligh-harvesting chlorophyll-protein complex was inserted into the chloroplast membrane with a concomitant appearance of grana stacks and an increase in photosynthetic unit size. Plastid membranes from plants grown under intermediate light were examined by freeze-fracture electron microscopy. The membrane particles on both the outer (PF) and inner (EF) leaflets of the thylakoid membrane were found to be randomly distributed. The particle density of the PF fracture face was approx. four times that of the EF fracture face. While only small changes in particle density were observed during the greening process under continuous light, major changes in particle size were noted, particularly in the EF particles of stacked regions (EFs) of the chloroplast membrane. Both the changes in particle size and an observed aggregation of the EF particles into the newly stacked regions of the membrane were correlated with the insertion of light-harvesting pigment- protein into the membrane. Evidence is presented for identification of the EF particles as the morphological equivalent of a "complete" photosystem II complex, consisting of a phosochemically active "core" complex surrounded by discrete aggregates of the light-harvesting pigment protein. A model demonstrating the spatial relationships of photosystem I, photosystem II, and the light-harvesting complex in the chloroplast membrane is presented.  相似文献   

20.
Photosystem II in green plant chloroplasts displays heterogeneity both in the composition of its light-harvesting antenna and in the ability to reduce the plastoquinone pool. These two features are discussed in terms of chloroplast development and in view of a proposed photosystem II repair cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号