首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K E Weaver  D B Clewell    F An 《Journal of bacteriology》1993,175(7):1900-1909
A 5-kbp region of pAD1, previously shown to be capable of supporting replication, copy control, and stable inheritance of the plasmid, was cloned into a replicon probe vector and subjected to transposon insertional mutagenesis. Transposon inserts identifying essential replication, copy control, and stability functions were isolated. Deletion of stability functions not essential for replication resulted in delimitation of a basic replicon. The complete DNA sequence of this approximately 3-kbp region and the precise positions of several transposon inserts were determined, and the phenotypic effects of the transposon inserts were correlated with the physical locations of individual determinants. The following three genes, apparently involved in plasmid maintenance, were identified; repA, which encodes a protein required for replication; repB, which encodes a protein involved in copy control; and repC, which may be involved in stable inheritance. In addition, two clusters of repeats composed of a consensus sequence, TAGTARRR, were identified, one located between the divergently transcribed repA and repB genes and another located downstream of repC. The region between repA and repB contained 25 repeats divided into two subregions of 13 and 12 repeats separated by 78 bp. The region located downstream of repC contained only three repeats but may be essential for plasmid replication, since deletion of this determinant resulted in loss of ability to replicate in Enterococcus faecalis. We hypothesize that the repeat units represent protein-binding sites required for assembly of the replisome and control of plasmid copy number. Another region of unrelated repeat units that may also be involved in replication is located within the repA gene. Possible mechanisms of action of these determinants are discussed.  相似文献   

2.
The symbiotic plasmid of Rhizobium etli CE3 belongs to the RepABC family of plasmid replicons. This family is characterized by the presence of three conserved genes, repA, repB, and repC, encoded by the same DNA strand. A long intergenic sequence (igs) between repB and repC is also conserved in all members of the plasmid family. In this paper we demonstrate that (i) the repABC genes are organized in an operon; (ii) the RepC product is essential for replication; (iii) RepA and RepB products participate in plasmid segregation and in the regulation of plasmid copy number; (iv) there are two cis-acting incompatibility regions, one located in the igs (incalpha) and the other downstream of repC (incbeta) (the former is essential for replication); and (v) RepA is a trans-acting incompatibility factor. We suggest that incalpha is a cis-acting site required for plasmid partitioning and that the origin of replication lies within incbeta.  相似文献   

3.
4.
5.
The replicator region of composite plasmid pTAV1 of Paracoccus versutus (included in mini-replicon pTAV320) belongs to the family of repABC replicons commonly found in plasmids harbored by Agrobacterium and Rhizobium spp. The repABC replicons encode three genes clustered in an operon, which are involved in partitioning (repA and repB) and replication (repC). In order to localize the partitioning site of pTAV320, the two identified incompatibility determinants of this mini-replicon (inc1, located in the intergenic sequence between repB and repC; and inc2, situated downstream of the repC gene) were PCR amplified and used together with purified RepB fusion protein (homologous to the type B partitioning proteins binding to the partitioning sites) in an electrophoretic mobility shift assay. The protein bound only inc2, forming two complexes in a protein concentration-dependent manner. The inc2 region contains two long (14-bp) repeated sequences (R1 and R2). Disruption of these sequences completely eliminates RepB binding ability. R1 and R2 have sequence similarities with analogous repeats of another repABC replicon of plasmid pPAN1 of Paracoccus pantotrophus DSM 82.5 and with centromeric sequences of the Bacillus subtilis chromosome. Excess RepB protein resulted in destabilization of the inc2-containing plasmid in Escherichia coli. On the other hand, the inc2 region could stabilize another unstable replicon in P. versutus when RepA and RepB were delivered in trans, proving that this region has centromere-like activity. Thus, it was demonstrated that repA, repB, and inc2 constitute a functional system for active partitioning of pTAV320.  相似文献   

6.
7.
The control of RepFIB replication appears to rely on the interaction between an initiator protein (RepA) and two sets of DNA repeat elements located on either side of the repA gene. Limited N-terminal sequence information obtained from a RepA:beta-galactosidase fusion protein indicates that although the first residue of RepA is methionine, the initiation of translation of RepA occurs from a CTG codon rather than from the predicted GTG codon located further downstream. Overexpressed RepA in trans is capable of repressing a repA:lacZ fusion plasmid in which the expression of the fusion protein is under the control of the repA promoter. The repA promoter has been located functionally by testing a series of repA:lacZ fusion plasmids. Both in vivo genetic tests and in vitro DNA-binding studies indicate that repA autoregulation can be achieved by RepA binding to one or more repeat elements which overlap the repA promoter sequence.  相似文献   

8.
Induced bending of plasmid pLS1 DNA by the plasmid-encoded protein RepA   总被引:8,自引:0,他引:8  
The broad host range streptococcal plasmid pLS1 encodes for a 5.1-kDa repressor protein, RepA. This protein has affinity for DNA (linear or supercoiled) and is translated from the same mRNA as the replication initiator protein RepB. By gel retardation assays, we observed that RepA shows specificity for binding to the plasmid HinfID fragment, which includes the target of the protein. The target of RepA within the plasmid DNA molecule has been located around the plasmid single site ApaLI. This site is included in a region that contains the promoter for the repA and repB genes and is contiguous to the plasmid ori(+). A complex sequence-directed DNA curvature is observed in this region of pLS1. Upon addition of RepA to plasmid linear DNA or to circularly permuted restriction fragments, this intrinsic curvature was greatly enhanced. Thus, a strong RepA-induced bending could be located in the vicinity of the ApaLI site. Visualization of the bent DNA was achieved by electron microscopy of complexes between RepA and plasmid DNA fragments containing the RepA target.  相似文献   

9.
10.
11.
12.
We have constructed and analyzed an in vitro system that will efficiently replicate plasmid RSF1010 and its derivatives. The system contains a partially purified extract from E.coli cells and three purified RSF1010-encoded proteins, the products of genes repA, repB (or mobA/repB), and repC. Replication in this system mimics the in vivo mechanism in that it (i) is initiated at oriV, the origin of vegetative DNA replication, (ii) proceeds in a population of plasmid molecules in both directions from this 396-base-pair origin region, and (iii) is absolutely dependent on the presence of each of the three rep gene products. In addition, we find that E.coli DNA gyrase, DnaZ protein (gamma subunit of poIIII holoenzyme) and SSB are required for in vitro plasmid synthesis. The bacterial RNA polymerase, the initiation protein DnaA, and the primosomal proteins DnaB, DnaC, DnaG and DnaT are not required. Furthermore, the replicative intermediates seen in the electron microscope suggest that replication in vitro begins with the simultaneous or non-simultaneous formation of two displacement loops that expand for a short stretch of DNA toward each other, and form a theta-type structure when the two displacing strands pass each other.  相似文献   

13.
RepA, a plasmid-encoded gene product required for pSC101 replication in Escherichia coli, is shown here to inhibit the replication of pSC101 in vivo when overproduced 4- to 20-fold in trans. Unlike plasmids whose replication is prevented by mutations in the repA gene, plasmids prevented from replicating by overproduction of the RepA protein were lost rapidly from the cell population instead of being partitioned evenly between daughter cells. Removal of the partition (par) locus increased the inhibitory effect of excess RepA on replication, while host and plasmid mutations that compensate for the absence of par, or overproduction of the E. coli DnaA protein, diminished it. A repA mutation (repA46) that elevates pSC101 copy number almost entirely eliminated the inhibitory effect of RepA at high concentration and stimulated replication when the protein was moderately overproduced. As the RepA protein can exist in both monomer and dimer forms, we suggest that overproduction promotes RepA dimerization, reducing the formation of replication initiation complexes that require the RepA monomer and DnaA; we propose that the repA46 mutation alters the ability of the mutant protein to dimerize. Our discovery that an elevated intracellular concentration of RepA specifically impedes plasmid partitioning implies that the RepA-containing complexes initiating pSC101 DNA replication participate also in the distribution of plasmids at cell division.  相似文献   

14.
The initiator protein of the plasmid pPS10, RepA, has a putative helix-turn-helix (HTH) motif at its C-terminal end. RepA dimers bind to an inverted repeat at the repA promoter (repAP) to autoregulate RepA synthesis. [D. García de Viedma, et al. (1996) EMBO J. in press]. RepA monomers bind to four direct repeats at the origin of replication (oriV) to initiate pPS10 replication This report shows that randomly generated mutations in RepA, associated with defficiencies in autoregulation, map either at the putative HTH motif or in its vicinity. These mutant proteins do not promote pPS10 replication and are severely affected in binding to both the repAP and oriV regions in vitro. Revertants of a mutant that map in the vicinity of the HTH motif have been obtained and correspond to a second amino acid substitution far upstream of the motif. However, reversion of mutants that map in the helices of the motif occurs less frequently, at least by an order of magnitude. All these data indicate that the helices of the HTH motif play an essential role in specific RepA-DNA interactions, although additional regions also seem to be involved in DNA binding activity. Some mutations have slightly different effects in replication and autoregulation, suggesting that the role of the HTH motif in the interaction of RepA dimers or monomers with their respective DNA targets (IR or DR) is not the same.  相似文献   

15.
The sequence of a 1823 base-pair region containing the replication functions of pPS10, a narrow host-range plasmid isolated from a strain of Pseudomonas savastanoi, is reported. The origin of replication, oriV, or pPS10 is contained in a 535 base-pair fragment of this sequence that can replicate in the presence of trans-acting function(s) of the plasmid. oriV contains four iterons of 22 base-pairs that are preceded by G+C-rich and A+T-rich regions. A dnaA box located adjacent to the repeats of the origin is dispensable but required for efficient replication of pPS10; A and T are equivalent bases at the 5' end of the box. repA, the gene of a trans-acting replication protein of 26,700 Mr has been identified by genetic and functional analysis. repA is adjacent to the origin of replication and is preceded by the consensus sequences of a typical sigma 70 promoter of Escherichia coli. The RepA protein has been identified, using the minicell system of E. coli, as a polypeptide with an apparent molecular mass of 26,000. A minimal pPS10 replicon has been defined to a continuous 1267 base-pair region of pPS10 that includes the oriV and repA sequences.  相似文献   

16.
We have developed a procedure to directly clone large fragments from the genome of the soil bacterium Sinorhizobium meliloti. Specific regions to be cloned are first flanked by parallel copies of an origin of transfer (oriT) together with a plasmid replication origin capable of replicating large clones in Escherichia coli but not in the target organism. Supplying transfer genes in trans specifically transfers the oriT-flanked region, and in this process, site-specific recombination at the oriT sites results in a plasmid carrying the flanked region of interest that can replicate in E. coli from the inserted origin of replication (in this case, the F origin carried on a BAC cloning vector). We have used this procedure with the oriT of the plasmid RK2 to clone contiguous fragments of 50, 60, 115, 140, 240, and 200 kb from the S. meliloti pExo megaplasmid. Analysis of the 60-kb fragment allowed us to identify a 9-kb region capable of autonomous replication in the bacterium Agrobacterium tumefaciens. The nucleotide sequence of this fragment revealed a replicator region including homologs of the repA, repB, and repC genes from other Rhizobiaceae, which encode proteins involved in replication and segregation of plasmids in many organisms.  相似文献   

17.
孙熙年 《微生物学报》1990,30(6):422-427
采用Tn5插入诱变、限制性核酸内切酶作图以及DNA转化等方法,对广泛寄主范围型质粒SF 1010的衍生体-pKT 2 40进行研究。证实质粒的寄主围决定于它在遗传背景不同的寄主中复制并保存自身的能力,而repA,rcpB和repC基因为该质拉复制所必需。  相似文献   

18.
The RepA protein of the Rts1 plasmid, consisting of 288 amino acids, is a trans-acting protein essential for replication. A mutant repA gene, repA delta C143, carrying a deletion that removed the 143 C-terminal amino acids of RepA, could transform, but at a low frequency, an Escherichia coli polA strain, JG112, when repA delta C143 was cloned into pBR322 with Rts1 ori in the natural configuration. The transformation was less efficient without the dyad DnaA box in the ori region, and no transformation occurred at 42 degrees C, characteristic of Rts1 replication. A fusion of the 3'-terminal half of repA of the P1 plasmid to repA delta C143 yielded a pBR322 chimeric plasmid that contained Rts1 ori through hybrid (Rts1-P1) repA. This plasmid was maintained much more stably in JG112 at 37 degrees C. At 42 degrees C, however, it was quite unstable. The overproduced hybrid RepA protein showed interference with mini-Rts1 replication in trans and also exhibited an autorepressor function, although both activities were decreased. These findings suggest that the N-terminal half of the RepA molecule of Rts1 is involved in the activation of the replication origin.  相似文献   

19.
We sequenced the minimum replication region of the virulence plasmid pYVe439-80 from a serogroup O:9 Yersinia enterocolitica. This sequence is 68% homologous on a 1,873-nucleotide stretch to the sequence of the RepFIIA replicon of the resistance plasmid R100. The sequence contains two open reading frames, repA and repB, encoding proteins of 33,478 and 9,568 daltons, respectively. The amino acid sequences of the two proteins are 77 and 55% identical, respectively, to proteins RepA1 and RepA2 of the R100 replicon. Analysis of minicells transformed with a copy number mutant demonstrated that the replication region of pYVe439-80 directs the synthesis of a 33-kilodalton protein. Disruption of repA, encoding this protein, abolished replication. Two regions of pYVe439-80 are 76 and 70% homologous, respectively, to the copy number control antisense RNA and to the origin of replication region of R100. A mutation introduced in the pYVe439-80 DNA corresponding to the R100 sequence encoding the copy number control antisense RNA resulted in an increase in copy number, indicating a functional homology between the two replicons.  相似文献   

20.
A moderately thermophilic (45 to 50 degrees C), highly acidophilic (pH 1.5 to 2.5), chemolithotrophic Acidithiobacillus caldus strain, f, was isolated from a biooxidation process used to treat nickel ore. Trans-alternating field electrophoresis analysis of total DNA from the A. caldus cells revealed two plasmids of approximately 14 and 45 kb. The 14-kb plasmid, designated pTC-F14, was cloned and shown by replacement of the cloning vector with a kanamycin resistance gene to be capable of autonomous replication in Escherichia coli. Autonomous replication was also demonstrated in Pseudomonas putida and Agrobacterium tumefaciens LBA 4404, which suggested that pTC-F14 is a broad-host-range plasmid. Sequence analysis of the pTC-F14 replicon region revealed five open reading frames and a replicon organization like that of the broad-host-range IncQ plasmids. Three of the open reading frames encoded replication proteins which were most closely related to those of IncQ-like plasmid pTF-FC2 (amino acid sequence identities: RepA, 81%; RepB, 78%; RepC, 74%). However, the two plasmids were fully compatible and pTC-F14 represents a new IncQ-like plasmid replicon. Surprisingly, asymmetrical incompatibility was found with the less closely related IncQ plasmid R300B derivative pKE462 and the IncQ-like plasmid derivative pIE1108. Analysis of the pTC-F14 oriV region revealed five direct repeats consisting of three perfectly conserved 22-bp iterons flanked by iterons of 23 and 21 bp. Plasmid pTC-F14 had a copy number of 12 to 16 copies per chromosome in both E. coli, and A. caldus. The rep gene products of pTC-F14 and pTF-FC2 were unable to functionally complement each other's oriV regions, but replication occurred when the genes for each plasmid's own RepA, RepB, and RepC proteins were provided in trans. Two smaller open reading frames were found between the repB and repA genes of pTC-F14, which encode proteins with high amino acid sequence identity (PasA, 81%; PasB, 72%) to the plasmid addiction system of pTF-FC2. This is the second time a plasmid stability system of this type has been found on an IncQ-like plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号