首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways in individual human pancreatic cancer PANC-1 cells. Treatment of cells with insulin (10 ng/ml) for 5 min markedly enhanced the proportion of cells that display an increase in intracellular [Ca2+] induced by picomolar concentrations of the GPCR agonist neurotensin. Interestingly, insulin increased the proportion of a subpopulation of cells that exhibit intracellular [Ca2+] oscillations in response to neurotensin at concentrations as low as 50-200 pM. Insulin enhanced GPCR-induced Ca2+ signaling in a time- and dose-dependent manner; a marked potentiation was obtained after an exposure to a concentration of 10 ng/ml for 5 min. Treatment with the mTORC1 inhibitor rapamycin abrogated the increase in GPCR-induced [Ca2+]i oscillations produced by insulin. Our results identify a novel aspect in the crosstalk between insulin receptor and GPCR signaling systems in pancreatic cancer cells, namely that insulin increases the number of [Ca2+]i oscillating cells induced by physiological concentrations of GPCR agonists through an mTORC1-dependent pathway.  相似文献   

2.
Recent evidences indicate the existence of an atypical D1 dopamine receptor other than traditional D1 dopamine receptor in the brain that mediates PI hydrolysis via activation of phospholipase Cβ (PLCβ). To further understand the basic physiological function of this receptor in brain, the effects of a selective phosphoinositide (PI)-linked D1 dopamine receptor agonist SKF83959 on cytosolic free calcium concentration ([Ca2+]i) in cultured rat prefrontal cortical astrocytes were investigated by calcium imaging. The results indicated that SKF83959 caused a transient dose-dependent increase in [Ca2+]i. Application of D1 receptor, but not D2, α1 adrenergic, 5-HT receptor, or cholinergic antagonist prevented SKF83959-induced [Ca2+]i rise, indicating that activation of the D1 dopamine receptor was essential for this response. Increase in [Ca2+]i was a two-step process characterized by an initial increase in [Ca2+]i mediated by release from intracellular stores, supplemented by influx through voltage-gated calcium channels, receptor-operated calcium channels, and capacitative Ca2+ entry. Furthermore, SKF83959-stimulated increase in [Ca2+]i was abolished following treatment with a PLC inhibitor. Overall, these results suggested that activation of D1 receptor by SKF83959 mediates a dose-dependent mobilization of [Ca2+]i via the PLC signaling pathway in cultured rat prefrontal cortical astrocytes.  相似文献   

3.
Stomatal closure in response to abscisic acid depends on mechanisms that are mediated by intracellular [Ca2+] ([Ca2+]i), and also on mechanisms that are independent of [Ca2+]i in guard cells. In this study, we addressed three important questions with respect to these two predicted pathways in Arabidopsis thaliana. (i) How large is the relative abscisic acid (ABA)‐induced stomatal closure response in the [Ca2+]i‐elevation‐independent pathway? (ii) How do ABA‐insensitive mutants affect the [Ca2+]i‐elevation‐independent pathway? (iii) Does ABA enhance (prime) the Ca2+ sensitivity of anion and inward‐rectifying K+ channel regulation? We monitored stomatal responses to ABA while experimentally inhibiting [Ca2+]i elevations and clamping [Ca2+]i to resting levels. The absence of [Ca2+]i elevations was confirmed by ratiometric [Ca2+]i imaging experiments. ABA‐induced stomatal closure in the absence of [Ca2+]i elevations above the physiological resting [Ca2+]i showed only approximately 30% of the normal stomatal closure response, and was greatly slowed compared to the response in the presence of [Ca2+]i elevations. The ABA‐insensitive mutants ost1‐2, abi2‐1 and gca2 showed partial stomatal closure responses that correlate with [Ca2+]i‐dependent ABA signaling. Interestingly, patch‐clamp experiments showed that exposure of guard cells to ABA greatly enhances the ability of cytosolic Ca2+ to activate S‐type anion channels and down‐regulate inward‐rectifying K+ channels, providing strong evidence for a Ca2+ sensitivity priming hypothesis. The present study demonstrates and quantifies an attenuated and slowed ABA response when [Ca2+]i elevations are directly inhibited in guard cells. A minimal model is discussed, in which ABA enhances (primes) the [Ca2+]i sensitivity of stomatal closure mechanisms.  相似文献   

4.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

5.
Extracellular nicotinamide adenine dinucleotide (NAD+) is known to increase the intracellular calcium concentration [Ca2+]i in different cell types and by various mechanisms. Here we show that NAD+ triggers a transient rise in [Ca2+]i in human monocytes activated with lipopolysaccharide (LPS), which is caused by a release of Ca2+ from IP3-responsive intracellular stores and an influx of extracellular Ca2+. By the use of P2 receptor-selective agonists and antagonists we demonstrate that P2 receptors play a role in the NAD+-induced calcium response in activated monocytes. Of the two subclasses of P2 receptors (P2X and P2Y) the P2Y receptors were considered the most likely candidates, since they share calcium signaling properties with NAD+. The identification of P2Y1 and P2Y11 as receptor subtypes responsible for the NAD+-triggered increase in [Ca2+]i was supported by several lines of evidence. First, specific P2Y1 and P2Y11 receptor antagonists inhibited the NAD+-induced increase in [Ca2+]i. Second, NAD+ was shown to potently induce calcium signals in cells transfected with either subtype, whereas untransfected cells were unresponsive. Third, NAD+ caused an increase in [cAMP]i, prevented by the P2Y11 receptor-specific antagonist NF157.  相似文献   

6.
The endothelin (ET) isoforms ET-1, ET-2 and ET-3 applied at 100 nM triggered a transient increase in [Ca2+]i in Bergmann glial cells in cerebellar slices acutely isolated from 20–25 day-old mice. The intracellular calcium concentration ([Ca2+]i) was monitored using Fura-2-based ([Ca2+]i) microfluorimetry. The ET-triggered ([Ca2+]i) transients were mimicked by ET, receptor agonist BO-3020 and were inhibited by ETB receptor antagonist BQ-788. ET elevated [Ca2+]i in Ca2+-free extracellular solution and the ET-triggered [Ca2+]i elevation was blocked by 500 nM thapsigargin indicating that the [Ca2+]i was released from InsP3 sensitive intracellular pools. The ET-triggered [Ca2+]i increase in Ca2+-free solution was shorter in duration. Restoration of normal extracellular [Ca2+] briefly after the ET application induced a second [Ca2+]i increase indicating the presence of a secondary Ca2+ influx which prolongs the Ca2+ signal. Pre-application of 100 μM ATP or 10 μM noradrenaline blocked the ET response suggesting the involvement of a common Ca2+ depot. The expression of ETB receptor mRNAs in Bergmann glial cells was revealed by single-cell RT-PCR. The mRNA was also found in Purkinje neurones, but no Ca2+ signalling was triggered by ET. We conclude that Bergmann glial cells are endowed with functional ETB receptors which induce the generation of intracellular [Ca2+]i signals by activation of Ca2+ release from InsP3-sensitive intracellular stores followed by a secondary Ca2+ influx.  相似文献   

7.
This study investigates the effects of dephostatin, a new tyrosine phosphatase inhibitor, on intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. Dephostatin evoked a sustained elevation in [Ca2+]i by mobilizing calcium from intracellular calcium stores in either the absence of extracellular calcium or the presence of lanthanium chloride (LaCl3). Pretreatment of acinar cells with dephostatin prevented cholecystokinin-octapeptide (CCK-8)-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF- 4), whereas co-incubation with CCK-8 enhances the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of dephostatin on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent, dithiothreitol. Stimulation of acinar cells with thapsigargin in the absence of extracellular Ca2+ resulted in a transient rise in [Ca2+]i . Application of dephostatin in the continuous presence of thapsigargin caused a small but sustained elevation in [Ca2+]i . These results suggest that dephostatin can mobilize Ca2+ from both a thapsigargin-sensitive and thapsigargin-insensitive intracellular stores in pancreatic acinar cells. In addition, dephostatin can stimulate the release of amylase from pancreatic acinar cells and moreover, reduce the secretory response to CCK-8. The results indicate that dephostatin can release calcium from intracellular calcium pools and consequently induces amylase secretion in pancreatic acinar cells. These effects are likely due to the oxidizing effects of this compound.  相似文献   

8.
The calcium-sensitive fluorescent indicator fura-2 and a microscope equipped for rapidly changing excitation wavelengths were used to look at the effects of growth factors on cytosolic free calcium ([Ca2+]i,) in NRK-49F cells. In these cells bradykinin induced a rapid increase in [Ca2+]i, which generally decayed to near basal [Ca2+]i within 3 minutes. The initial rise in [Ca2+]i in response to bradykinin was relatively independent of extracellular calcium; however, the decay to basal [Ca2+]i was more rapid in the absence of extracellular calcium. Measurements made on individual cells showed a heterogeneity in the response to bradykinin. Epidermal growth factor (EGF) had no effect on [Ca2+]i in NRK-49F cells when added alone in the presence of extracellular calcium. Simultaneous addition of bradykinin and EGF produced a more prolonged increase in [Ca2+]i than bradykinin alone. The prolongation was dependent on the presence of extracellular calcium and did not occur in its absence. Transient increases in [Ca2+]i occurring after the initial peak were occasionally seen in these cells. Our results indicate that there is rapid interaction between the signaling mechanisms for bradykinin and EGF. When this occurs, one effect is the transport of calcium into the cell from the extracellular environment, causing a more prolonged rise in [Ca2+]i. This effect occurs within 1 minute after combined addition of bradykinin and EGF.  相似文献   

9.
Lysophospholipids have recently been demonstrated to induce activation and proliferation of fibroblasts and other cell lineages by interacting with high affinity cell surface receptors leading to specific intracellular signaling events. Platelet activation, likely at the site of injury or inflammation, results in increased production of lysophospholipids suggesting a possible source of lysophospholipids. We have recently demonstrated that high concentrations of lysophospholipids are present in ascites and plasma from ovarian cancer patients, suggesting that physiologically produced lysophospholipids could interact with cells present in these fluids, including lymphocytes, and alter their function. We demonstrate herein that lysophosphatidic acid (LPA), lysophosphatidylserine (LPS), and sphingosylphosphorylcholine (SPC) activate the Jurkat T cell line. Each of the lysophospholipids induced a transient increase in cytosolic free calcium ([Ca2+]i) in Jurkat cells. Increases in [Ca2+]i were cross-desensitized by LPA, LPS and SPC, suggesting that the lysophospholipids share the same receptor(s) or that their downstream signaling pathways converge or interact. Lysophosphatidylgycerol (LPG), a competitive inhibitor of the putative LPA receptor, inhibited the calcium releasing activity of LPA, but not that of LPS and SPC, suggesting that these lysophospholipids interact with different receptors and that desensitization is due to interactions in downstream signaling pathways. The ability of the lysophospholipids to induce increases in [Ca2+]i was attenuated, but not completely blocked, by increases in [Ca2+]i induced by activation of the thrombin receptor. In contrast, increases in [Ca2+]i induced by the lysophospholipids and cross-linking the CD3 component of the T cell receptor complex with the UCHT1 antibody did not undergo heterologous desensitization. Strikingly, LPA is sufficient to stimulate proliferation of Jurkat cells in serum-free medium or in synergy with low concentrations of fetal bovine serum. In addition, LPA also increased the production of the T cell growth factor, interleukin 2 (IL-2), by Jurkat cells treated with phorbol esters. LPS, in contrast, inhibited Jurkat proliferation while increasing IL-2 production and SPC inhibited both processes. Thus, although all three lysophospholipids were sufficient to induce a transient increase in [Ca2+]i in Jurkat cells, they induced markedly different physiological consequences. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Glucagon induces intracellular Ca2+ ([Ca2+]i) elevation by stimulating glucagon receptor (GCGR). Such [Ca2+]i signaling plays important physiological roles, including glycogenolysis and glycolysis in liver cells and the survival of β-cells. Previous studies indicated that phospholipase C (PLC) might be involved in glucagon-mediated [Ca2+]i response. Other studies also debated whether cAMP accumulation mediated by GCGR/Gαs coupling contributes to [Ca2+]i elevation. But the exact mechanisms remain uncertain. In the present study, we found that glucagon induces [Ca2+]i elevation in HEK293 cells expressing GCGR. Removing extracellular Ca2+ did not affect glucagon-stimulated [Ca2+]i response. But depleting the intracellular Ca2+ store by thapsigargin completely inhibited glucagon-induced [Ca2+]i response. Experiments with forskolin and adenylyl cyclase inhibtor revealed that cAMP is not the cause of [Ca2+]i response. Further studies with Gαq/11 RNAi and pertussis toxin (PTX) indicated that both Gαq/11 and Gαi/o are involved. Combination of Gαq/11 RNAi and Gαi/o inhibition almost completely abolished glucagon-induced [Ca2+]i signaling.  相似文献   

11.
The effect of extracellular ATP on the intracellular calcium concentration ([Ca2+]i) in rat submandibular glands was tested. The dose-response curve for ATP was biphasic with a first increase in the 1–30 μM concentration range and a further increase at concentrations higher than 100 μM. Among ATP analogs, only benzoyl-ATP stimulated the low affinity component. ATPτS blocked this response. All the other analogs tested reproduced the high-affinity low capacity response. Magnesium and Coomassie blue selectively blocked the low affinity component. High concentrations of ATP blocked the increase of the intracellular calcium concentration [Ca2+]i in response to 100 μM carbachol. By itself, substance P (100 pM-1 μM) increased the [Ca2+]i. One mM ATP potentiated the response to concentrations of substance P higher than 10 nM. This potentiation was reversed by extracellular magnesium. Carbachol 100 μM and substance P (100 pM-1 μM) increased the release of inositol trisphosphate (IP3) from polyphosphoinositides (polyPI). Activation of the low affinity ATP receptors did not activate the polyPI-specific phospholipase C but inhibited its activation by 100 μM carbachol (−50%) and by 100 nM substance P (−60% at 1 nM substance P and −40% at 100 nM substance P). Substance P induced a strong homologous desensitization: a preincubation with 1 nM substance P nearly completely abolished the response to 1 μM substance P. When the cells were exposed to ATP before the second addition of substance P, the purinergic agonist partially restored the response to the tachykinin without totally reversing the desensitization. It is concluded that two types of purinergic receptors coexist in rat submandibular glands; a high-affinity, low capacity receptor which remains pharmacologically and functionally undefined and a low affinity site, high capacity receptor of the P2Z type coupled to a non-selective cation channel. The occupancy of these low affinity sites blocks the increase of the [Ca2+]i in response to a muscarinic agonist and the activation of polyPI-specific phospholipase C by carbachol and substance P. It potentiates the effect of high concentrations of substance P on the [Ca2+]i. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Orexins, novel excitatory neuropeptides from the lateral hypothalamus, have been strongly implicated in the regulation of sleep and wakefulness. In this study, we explored the effects and mechanisms of orexin A on intracellular free Ca2+ concentration ([Ca2+]i) of freshly dissociated neurons from layers V and VI in prefrontal cortex (PFC). Changes in [Ca2+]i were measured with fluo-4/AM using confocal laser scanning microscopy. The results revealed that application of orexin A (0.1 ≈1 μM) induced increase of [Ca2+]i in a dose-dependent manner. This elevation of [Ca2+]i was completely blocked by pretreatment with selective orexin receptor 1 antagonist SB 334867. While depletion of intracellular Ca2+ stores by the endoplasmic reticulum inhibitor thapsigargin (2 μM), [Ca2+]i in PFC neurons showed no increase in response to orexin A. Under extracellular Ca2+-free condition, orexin A failed to induce any changes of Ca2+ fluorescence intensity in these acutely dissociated cells. Our data further demonstrated that the orexin A-induced increase of [Ca2+]i was completely abolished by the inhibition of intracellular protein kinase C or phospholipase C activities using specific inhibitors, BIS II (1 μM) and D609 (10 μM), respectively. Selective blockade of L-type Ca2+ channels by nifedipine (5 μM) significantly suppressed the elevation of [Ca2+]i induced by orexin A. Therefore, these findings suggest that exposure to orexin A could induce increase of [Ca2+]i in neurons from deep layers of PFC, which depends on extracellular Ca2+ influx via L-type Ca2+ channels through activation of intracellular PLC-PKC signaling pathway by binding orexin receptor 1.  相似文献   

13.
Flow cytometric analyses were performed to study intracellular single-cell calcium transients ([Ca2+]i) in suspended human neutrophils during the initial phase of N-formyl peptide stimulation. Thereby, two neutrophil populations became apparent. Early maximally Ca2+-responding (high fluorescence) neutrophils and not-yet Ca2+-responding (low fluorescence) neutrophils, but no neutrophils with intermediate levels of [Ca2+]i, were detected. Within 7 s the number of low fluorescence neutrophils decreased and the number of high fluorescence neutrophils increased maximally. This suggests that [Ca2+]i transients occurred abruptly in individual neutrophils within a time interval below 1 s. At lower N-formyl peptide concentrations the lag times of individual neutrophils and the interval time of maximal activation of the [Ca2+]i-responding neutrophil population increased, however the percentage of [Ca2+]i-responding cells decreased. Surprisingly, no influence of the N-formyl peptide concentration on the [Ca2+]i-induced fluorescence signal of the individual cell was observed: it was always in an almost maximal range or not responding. In parallel, binding studies performed with fluorescein-labeled N-formyl peptide revealed that the heterogeneity of [Ca2+]i-responding cells cannot be explained by different receptor occupancy. In summary, this study demonstrates that [Ca2+]i transients induced by N-formyl peptides in suspended individual human neutrophils occur very rapidly in an almost “all-or-none manner” and that the mean increasing fluorescence signal of a calcium indicator within a whole neutrophil population results from varying lag times of the individual cells, rather than from the mean simultaneous progress of many cells. © 1993 Wiley-Liss, Inc.  相似文献   

14.
The data presented here describe ratio-imaging of in intracellular free calcium (Ca2+i) during the self-incompatibility (SI) response in pollen. Use of the ratiometric indicator, fura-2 dextran, in pollen tubes of Papaver rhoeas has provided new, detailed information about the spatial-temporal alterations in Ca2+i, and has permitted calibration of alterations in the concentration of intracellular free calcium ([Ca2+]i) in the SI response. Ratio images demonstrate that, like other pollen tubes, normally growing P. rhoeas pollen tubes exhibit a tip-focused gradient of Ca2+bfi, with levels reaching 1–2 μM at the extreme apex of the pollen tube. Non-growing pollen tubes did not exhibit this tip-focused gradient. Basal levels of Ca2+i in the shank of the pollen tube were fairly consistent and had a mean value of 210 nM, with low-level fluctuations +/? 50 nM observed. Challenge with incompatible S proteins resulted in S-specific, rapid and dramatic alterations in [Ca2+]i within a few seconds of challenge. Increases in [Ca2+]i were visualized in the subapical/shank regions of the pollen tube and alterations in [Ca2+]i in this region subsequently increased for several minutes, reaching> 1.5 μM. At the pollen tube tip, a diminution of the tip-focused gradient was observed, which following some fluctuation, was reduced to basal levels within ~1 min. Our data suggest that some of these alterations in [Ca2+]i might be interpreted as a calcium wave, as the changes are not global. Although the increases in [Ca2+]i in the subapical/shank region are very rapid, because tip [Ca2+]i oscillates during normal growth, it is difficult to ascertain whether the increases in the shank of the pollen tube precede the decreases in [Ca2+]i at the pollen tube tip.  相似文献   

15.
Agomelatine, a novel antidepressant exerting its effects through melatonergic and serotonergic systems, implicated to be effective against pain including neuropathic pain but without any knowledge of mechanism of action. To explore the possible role of agomelatine on nociceptive transmission at the peripheral level, the effects of agomelatine on intracellular calcium ([Ca2+]i) signaling in peripheral neurons were investigated in cultured rat dorsal root ganglion (DRG) neurons. Using the fura-2-based calcium imaging technique, the effects of agomelatine on [Ca2+]i and roles of the second messenger-mediated pathways were assessed. Agomelatine caused [Ca2+]i signaling in a dose-dependent manner when tested at 10 and 100 μM concentration. Luzindole, a selective melatonin receptor antagonist, almost completely blocked the agomelatine-induced calcium signals. The agomelatine-induced calcium transients were also nearly abolished following pretreatment with the 100 ng/ml pertussis toxin, a Gi/o protein inhibitor. The stimulatory effects of agomelatine on [Ca2+]i transients were significantly reduced by applications of phospholipase C (PLC) and protein kinase C (PKC) blockers, 10 μM U73122, and 10 μM chelerythrine chloride, respectively. The obtained results of agomelatine-induced [Ca2+]i signals indicates that peripheral mechanisms are involved in analgesic effects of agomelatine. These mechanisms seems to involve G-protein-coupled receptor activation and PLC and PKC mediated mechanisms.  相似文献   

16.
Antibody to galactocerebroside (anti- GalC) has been shown to evoke a Ca2+ response in cultured glioma U- 87 MG cells. The rise in [Ca2+]i was due to release of Ca2+ from the intracellular stores and influx through the plasma membrane. The rise in [Ca2+]i was markedly inhibited by neomycin sulphate and phorbol dibutyrate suggesting the involvement of phosphoinositides in Ca2+ mobilization. The Ca2+ response induced by anti- GalC was rapidly desensitized and repeated addition of anti- GalC did not elevate the [Ca2+]i. Heterologous desensitization was observed with bradykinin and adenosine triphosphate. The intracellular Ca2+ store mobilized by anti- GalC appears to be the IPin3 sensitive pool of endoplasmic reticulum. The influx of Ca2+ is mediated by a channel. The Ca2+ influx was also prevented by pretreatment of cells with neomycin sulphate or phorbol dibutyrate. We propose that galactocerebroside may be associated with phospholipase C or other proteins linked to the phosphoinositide pathway of transmembrane signalling and anti- GalC activates the breakdown of phosphoinositides and thus mobilizes Ca2+ in U-87 MG cells.  相似文献   

17.
Abstract: The mechanisms involved in Ca2+ mobilization evoked by the muscarinic cholinoceptor (mAChR) agonist carbachol (CCh) and N-methyl-d -aspartate (NMDA) in cerebellar granule cells have been investigated. An initial challenge with caffeine greatly reduced the subsequent intracellular Ca2+ concentration ([Ca2+]i) response to CCh (to 45 ± 19% of the control), and, similarly, a much reduced caffeine response was detectable after prior stimulation with CCh (to 27 ± 6% of the control). CCh-evoked [Ca2+]i responses were inhibited by preincubation with thapsigargin (10 µM), 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ; 25 µM), ryanodine (10 µM), or dantrolene (25 µM). BHQ pretreatment was found to have no effect on the sustained phase of the NMDA-evoked [Ca2+]i response. Both CCh (1 mM) and 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD; 200 µM) evoked a much diminished increase in [Ca2+]i in granule cells pretreated with CCh for 24 h compared with vehicle-treated control cells (CCh, 23 ± 14%; ACPD, 27 ± 1% of respective control values). In contrast, a 24-h CCh pretreatment decreased the subsequent inositol 1,4,5-trisphosphate (InsP3) response to CCh to a much greater extent compared with responses evoked by metabotropic glutamate receptor (mGluR) agonists; this suggests that the former effect on Ca2+ mobilization represents a heterologous desensitization of the mGluR-mediated response distal to the pathway second messenger. Furthermore, [Ca2+]i responses to caffeine and NMDA were unaffected by a 24-h pretreatment with CCh. This study indicates that ryanodine receptors, as well as InsP3 receptors, appear to be crucial to the mAChR-mediated [Ca2+]i response in granule cells. As BHQ apparently differentiates between the CCh- and NMDA-evoked responses, it is possible that the directly InsP3-sensitive pool is physically different from the ryanodine receptor pool. Also, activation of InsP3 receptors may not contribute significantly to NMDA-evoked elevation of [Ca2+]i in cerebellar granule cells. A model for the topographic organization of cerebellar granule cell Ca2+ stores is proposed.  相似文献   

18.
Abstract: The relationship between elevations in intracellular free Ca2+ concentration ([Ca2+]i) by different mechanisms and tyrosine hydroxylase (TH) gene expression was examined. Depolarization by an elevated K+ concentration triggered rapid and sustained increases in [Ca2+]i from a basal level of ~50 to 110–150 nM and three- to fourfold elevations in TH mRNA levels, requiring extracellular calcium but not inositol 1,4,5-trisphosphate (IP3). On the other hand, bradykinin or thapsigargin, both of which induce release of intracellular calcium stores via IP3 or inhibition of Ca2+-ATPase, rapidly elevated [Ca2+]i to >200 nM and increased TH gene expression (three-to fivefold). Confocal imaging showed that the elevations in [Ca2+]i in each case occurred throughout the cyto- and nucleoplasm. The initial rise in [Ca2+]i due to either bradykinin or thapsigargin, which did not require extracellular calcium, was sufficient to initiate the events leading to increased TH expression. Consistent with this, the effects of bradykinin on TH expression were inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester which chelates or inhibits the release of intracellular calcium, respectively. Bradykinin required a rise in [Ca2+]i for <10 min, as opposed to 10–30 min for depolarization to increase TH mRNA levels. These results demonstrate that although each of these treatments increased TH gene expression by raising [Ca2+]i, there are important differences among them in terms of the magnitude of elevated [Ca2+]i, requirements for extracellular calcium or release of intracellular calcium stores, and duration of elevated [Ca2+]i, indicating the involvement of different calcium signaling pathways leading to regulation of TH gene expression.  相似文献   

19.
Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10?5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10?4M) and bradykinin (10?7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10?7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.  相似文献   

20.
1) In the rat pituitary, angiotensin type 1B receptors (AT1B) are located in lactotrophs and corticotrophs.2) Activation of AT1B receptors are coupled to Gq/11 (Guanine protein coupled receptor, or GPCR); they increase phospholipase C (PLC) activity resulting in inositol 1,4,5 triphosphate (InsP3) and diacylglycerol (DAG) formation. A biphasic increase in [Ca2+]itriggered by InsP3 and DAG ensues.3) As many GPCRs, AT1B pituitary receptors rapidly desensitize.4) This was observed in the generation of InsP3, the mobilization of intracellular Ca2+, and in prolactin release. Both homologous and heterologous desensitization was evidenced.5) Desensitization of the angiotensin II type 1 (AT1) receptor in the pituitary shares similarities and differences with endogenously expressed or transfected AT1 receptors in different cell types.6) In the pituitary hyperplasia generated by chronic estrogen treatment there was desensitization or alteration in angiotensin II (Ang II) evoked intracellular Ca2+ increase, InsP3 generation, and prolactin release. This correlates with a downregulation of AT1 receptors.7) In particular, in hyperplastic cells Ang II failed to evoke a transient acute peak in [Ca2+]i, which was replaced by a persistent plateau phase of [Ca2+]i increase.8) Different calcium channels participate in Ang II induced [Ca2+]i increase in control and hyperplastic cells. While spike phase in control cells is dependent on intracellular stores sensitive to thapsigargin, in hyperplastic cells plateau increase is dependent on extracellular calcium influx.9) Signal transduction of the AT1 pituitary receptor is greatly modified by hyperplasia, and it may be an important mechanism in the control of the hyperplastic process.10) In the hypothalamus and brain stem there is a predominant expression of AT1A and AT2 mRNA.11) Ang II acts at specific receptors located on neurons in the hypothalamus and brain stem to elicit alterations in blood pressure, fluid intake, and hormone secretion.12) Calcium channels play important roles in the Ang II induced behavioral and endocrine responses.13) Ang II, in physiological concentrations, can activate AT1 receptors to stimulate both Ca2+ release from intracellular stores and Ca2+ influx from the extracellular space to increase [Ca2+]i in polygonal and stellate astroglia of the hypothalamus and brain stem.14) In primary cell culture of neurons from newborn rat hypothalamus and brain stem, it has also been determined that Ang II elicits an AT1 receptor mediated inhibition of delayed rectifier K(+) current and a stimulation of Ca2+ current.15) In primary cell cultures derived from the subfornical organ or the organum vasculosum laminae terminalis of newborn rat pups, Ang II produced a pronounced desensitization of the [Ca2+]i response.16) Hypothalamic and pituitary Ang II systems are involved in different functions, some of which are related. At both levels Ang II signals through [Ca2+]i in a characteristic way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号