首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cell infection processes and host ranges of canine parvovirus (CPV) and feline panleukopenia virus (FPV) are controlled by their capsid interactions with the transferrin receptors (TfR) on their host cells. Here, we expressed the ectodomains of wild-type and mutant TfR and tested those for binding to purified viral capsids and showed that different naturally variant strains of the viruses were associated with variant interactions with the receptors which likely reflect the optimization of the viral infection processes in the different hosts. While all viruses bound the feline TfR, reflecting their tissue culture host ranges, a naturally variant mutant of CPV (represented by the CPV type-2b strain) that became the dominant virus worldwide in 1979 showed significantly lower levels of binding to the feline TfR. The canine TfR ectodomain did not bind to a detectable level in the in vitro assays, but this appears to reflect the naturally low affinity of that interaction, as only low levels of binding were seen when the receptor was expressed on mammalian cells; however, that was sufficient to allow endocytosis and infection. The apical domain of the canine TfR controls the specific interaction with CPV capsids, as a canine TfR mutant altering a glycosylation site in that domain bound FPV, CPV-2, and CPV-2b capsids efficiently. Enzymatic removal of the N-linked glycans did not allow FPV binding to the canine TfR, suggesting that the protein sequence difference is itself important. The purified feline TfR inhibited FPV and CPV-2 binding and infection of feline cells but not CPV-2b, indicating that the receptor binding may be able to prevent the attachment to the same receptor on cells.  相似文献   

2.
Feline panleukopenia virus (FPV) and its host range variant, canine parvovirus (CPV), can bind the feline transferrin receptor (TfR), while only CPV binds to the canine TfR. Introducing two CPV-specific changes into FPV (at VP2 residues 93 and 323) endowed that virus with the canine TfR binding property and allowed canine cell infection, although neither change alone altered either property. In CPV the reciprocal changes of VP2 residue 93 or 323 to the FPV sequences individually resulted in modest reductions in infectivity for canine cells. Changing both residues in CPV to the FPV amino acids blocked the canine cell infection, but that virus was still able to bind the canine TfR at low levels. This shows that both CPV-specific changes control canine TfR binding but that binding is not always sufficient to mediate infection.  相似文献   

3.
Canine parvovirus (CPV) emerged in 1978 as a host range variant of feline panleukopenia virus (FPV). This change of host was mediated by the mutation of five residues on the surface of the capsid. CPV and FPV enter cells by endocytosis and can be taken up by many non-permissive cell lines, showing that their host range and tissue specificity are largely determined by events occurring after cell entry.We have determined the structures of a variety of strains of CPV and FPV at various pH values and in the presence or absence of Ca(2+). The largest structural difference was found to occur in a flexible surface loop, consisting of residues 359 to 375 of the capsid protein. This loop binds a divalent calcium ion in FPV and is adjacent to a double Ca(2+)-binding site, both in CPV and FPV. Residues within the loop and those associated with the double Ca(2+)-binding site were found to be essential for virus infectivity. The residues involved in the double Ca(2+)-binding site are conserved only in FPV and CPV.Our results show that the loop conformation and the associated Ca(2+)-binding are influenced by the Ca(2+) concentration, as well as pH. These changes are correlated with the ability of the virus to hemagglutinate erythrocytes. The co-localization of hemagglutinating activity and host range determinants on the virus surface implies that these properties may be functionally linked. We speculate that the flexible loop and surrounding regions are involved in binding an as yet unidentified host molecule and that this interaction influences host range.  相似文献   

4.
Canine parvovirus (CPV) and feline panleukopenia virus (FPV) capsids bind to the transferrin receptors (TfRs) of their hosts and use these receptors to infect cells. The binding is partially host specific, as FPV binds only to the feline TfR, while CPV binds to both the canine and feline TfRs. The host-specific binding is controlled by a combination of residues within a raised region of the capsid. To define the TfR structures that interact with the virus, we altered the apical domain of the feline or canine TfR or prepared chimeras of these receptors and tested the altered receptors for binding to FPV or CPV capsids. Most changes in the apical domain of the feline TfR did not affect binding, but replacing Leu221 with Ser or Asp prevented receptor binding to either FPV or CPV capsids, while replacing Leu221 with Lys resulted in a receptor that bound only to CPV but not to FPV. Analysis of recombinants of the feline and canine TfRs showed that sequences controlling CPV-specific binding were within the apical domain and that more than one difference between these receptors determined the CPV-specific binding of the canine TfR. Single changes within the canine TfR which removed a single amino acid insertion or which eliminated a glycosylation site gave that receptor the expanded ability to bind to FPV and CPV. In some cases, binding of capsids to mutant receptors did not result in infection, suggesting a structural role for the receptor in cell infection by the viruses.  相似文献   

5.
6.
A related group of parvoviruses infects members of many different carnivore families. Some of those viruses differ in host range or antigenic properties, but the true relationships are poorly understood. We examined 24 VP1/VP2 and 8 NS1 gene sequences from various parvovirus isolates to determine the phylogenetic relationships between viruses isolated from cats, dogs, Asiatic raccoon dogs, mink, raccoons, and foxes. There were about 1.3% pairwise sequence differences between the VP1/VP2 genes of viruses collected up to four decades apart. Viruses from cats, mink, foxes, and raccoons were not distinguished from each other phylogenetically, but the canine or Asiatic raccoon dog isolates formed a distinct clade. Characteristic antigenic, tissue culture host range, and other properties of the canine isolates have previously been shown to be determined by differences in the VP1/VP2 gene, and we show here that there are at least 10 nucleotide sequence differences which distinguish all canine isolates from any other virus. The VP1/VP2 gene sequences grouped roughly according to the time of virus isolation, and there were similar rates of sequence divergence among the canine isolates and those from the other species. A smaller number of differences were present in the NS1 gene sequences, but a similar phylogeny was revealed. Inoculation of mutants of a feline virus isolate into dogs showed that three or four CPV-specific differences in the VP1/VP2 gene controlled the in vivo canine host range.  相似文献   

7.
Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts.  相似文献   

8.
Traas AM 《Theriogenology》2008,70(3):343-348
Fetal depression following dystocia and Cesarean section has two primary causes; the first (and often most important) cause is hypoxia, and the second is depression from anesthetic agents given to the dam. Resuscitation efforts should be provided in the following order: warmth, airway, breathing, circulation, and drugs. Adequate time should be allowed for correction of hypoxia using ventilatory and circulatory support before drugs are used, with the exception of drugs given to reverse anesthetic and analgesic agents that were given to the dam prior to delivery of the neonates.  相似文献   

9.
Canine parvovirus (CPV) enters and infects cells by a dynamin-dependent, clathrin-mediated endocytic pathway, and viral capsids colocalize with transferrin in perinuclear vesicles of cells shortly after entry (J. S. L. Parker and C. R. Parrish, J. Virol. 74:1919-1930, 2000). Here we report that CPV and feline panleukopenia virus (FPV), a closely related parvovirus, bind to the human and feline transferrin receptors (TfRs) and use these receptors to enter and infect cells. Capsids did not detectably bind or enter quail QT35 cells or a Chinese hamster ovary (CHO) cell-derived cell line that lacks any TfR (TRVb cells). However, capsids bound and were endocytosed into QT35 cells and CHO-derived TRVb-1 cells that expressed the human TfR. TRVb-1 cells or TRVb cells transiently expressing the feline TfR were susceptible to infection by CPV and FPV, but the parental TRVb cells were not. We screened a panel of feline-mouse hybrid cells for susceptibility to FPV infection and found that only those cells that possessed feline chromosome C2 were susceptible. The feline TfR gene (TRFC) also mapped to feline chromosome C2. These data indicate that cell susceptibility for these viruses is determined by the TfR.  相似文献   

10.
Medical management of canine and feline dystocia   总被引:1,自引:0,他引:1  
Pretzer SD 《Theriogenology》2008,70(3):332-336
When dystocia is diagnosed in the bitch or queen, two forms of treatment exist: medical or surgical therapy. Medical management of dystocia has the advantage of aiding completion of the parturition process without surgery or anesthesia. However, since not all cases of dystocia can be managed medically, educated and careful decision making is required prior to instituting medical management in cases of dystocia. Improper medical treatment, especially when surgical management is clinically indicated, can result in compromise and even death of the dam and fetuses. This paper focuses on the decision making necessary prior to instituting medical management for cases of dystocia in both bitches and queens, and describes available therapeutics.  相似文献   

11.
Traas AM 《Theriogenology》2008,70(3):337-342
If medical management of dystocia has failed or is inadvisable, a Cesarean section is indicated. The necessity of surgery is primarily based on the condition of the dam, progression of labor, and fetal heart rate. Timely intervention is crucial for optimal fetal and maternal survival. Surgical technique may vary, based on the needs of each individual case. There are many options for each portion of the surgery, including the choice of anesthetic protocol, abdominal approach, uterine incision location, and post-surgical pain management. Indications for surgery and some of the options for each step of the procedure are presented. Episiotomy is rarely used to treat dystocia and therefore, it is discussed only briefly.  相似文献   

12.
13.
Kahn SA 《Lab animal》2007,36(5):25-26
Esophagostomy feeding tubes may be used to provide nutrition to animals with insufficient calorie intake. This column describes tube placement and use in the feline patient.  相似文献   

14.
15.
16.
In the adult rodent brain, neural progenitor cells migrate from the subventricular zone of the lateral ventricle towards the olfactory bulb in a track known as the rostral migratory stream (RMS). To facilitate the study of neural progenitor cells and stem cell therapy in large animal models of CNS disease, we now report the location and characteristics of the normal canine and feline RMS. The RMS was found in Nissl-stained sagittal sections of adult canine and feline brains as a prominent, dense, continuous cellular track beginning at the base of the anterior horn of the lateral ventricle, curving around the head of the caudate nucleus and continuing laterally and ventrally to the olfactory peduncle before entering the olfactory tract and bulb. To determine if cells in the RMS were proliferating, the thymidine analog 5-bromo-2-deoxyuridine (BrdU) was administered and detected by immunostaining. BrdU-immunoreactive cells were present throughout this track. The RMS was also immunoreactive for markers of proliferating cells, progenitor cells and immature neurons (Ki-67 and doublecortin), but not for NeuN, a marker of mature neurons. Luxol fast blue and CNPase staining indicated that myelin is closely apposed to the RMS along much of its length and may provide guidance cues for the migrating cells. Identification and characterization of the RMS in canine and feline brain will facilitate studies of neural progenitor cell biology and migration in large animal models of neurologic disease.  相似文献   

17.
Silver-stained preparations of cultured lymphocytes obtained from 12 pure-bred dogs revealed the presence of nucleolus organizer regions (NORs) on four to seven chromosomes in females and five to eight chromosomes in males. All seven males had a NOR on the Y chromosome. The telomeric location of the NORs on the autosomes suggested by an earlier study was confirmed.  相似文献   

18.
Ossiboff RJ  Parker JS 《Journal of virology》2007,81(24):13608-13621
The feline junctional adhesion molecule A (fJAM-A) is a functional receptor for feline calicivirus (FCV). fJAM-A is a member of the immunoglobulin superfamily (IgSF) and consists of two Ig-like extracellular domains (D1 and D2), a membrane-spanning domain, and a short cytoplasmic tail. To identify regions of fJAM-A that interact with FCV, we purified recombinant fJAM-A ectodomain and D1 and D2 domains. We found that preincubation of FCV with the ectodomain or D1 was sufficient to inhibit FCV infection in plaque reduction assays. In enzyme-linked immunosorbent assays, FCV binding to fJAM-A ectodomain was concentration dependent and saturable; however, FCV bound D1 alone weakly and was unable to bind D2. To characterize FCV binding to surface-expressed fJAM-A, we transfected truncated and chimeric forms of fJAM-A into a nonpermissive cell line and assayed binding by flow cytometry. Only D1 was necessary for FCV binding to cells; all other domains could be replaced. Using a structure-guided mutational approach, we identified three mutants of fJAM-A within D1 (D42N, K43N, and S97A) that exhibited significantly decreased capacities to bind FCV. In contrast to our finding that D1 mediated FCV binding, we found that all domains of fJAM-A were necessary to confer susceptibility to FCV infection. Furthermore, surface expression of fJAM-A was not sufficient to permit FCV infection by all of the isolates we investigated. This indicates that (i) other cellular factors are required to permit productive FCV infection and (ii) individual FCV isolates differ in the factors they require.  相似文献   

19.
We reevaluated the host ranges of feline leukemia virus (FeLV) subgroups A, B and C using pseudotype assays based on recombinant NB-tropic murine leukemia virus, which is not usually blocked after viral entry in mammalian cells. Pseudotype viruses of FeLV-B and -C infected a variety of cell lines from many mammalian species. Unexpectedly, FeLV-A pseudotype viruses of two independent isolates from the UK and US also infected a variety of non-feline cell lines including cells from humans, rabbits, pigs and minks. Moreover, both isolates of FeLV-A productively infected human embryonic kidney 293 and mink Mv-1-Lu cells. We conclude that FeLV-A is not strictly ecotropic.  相似文献   

20.
Canine and feline platelet cytocentrifuge preparations (CCPs), cryostat and paraffin-embedded bone marrow sections were used in this study. We evaluated whether platelets, megakaryocytes and megakaryocyte precursor cells could be labelled by monoclonal antibodies (Y2/51, CLB-thromb/1, HPL1) against human platelet membrane glycoprotein GP IIIa and the GP IIb/IIIa complex or by the following 10 biotinylated lectins: concanavalin A (Con A), Lens culinaris agglutinin (LCA), Pisum sativum agglutinin (PsA), wheat germ agglutinin (WGA), peanut agglutinin (PNA), Phaseolus vulgaris lectin (PHA-L), Ricinus communis agglutinin 120 (RCA120), Ulex europaeus agglutinin — I(UEA-1), soybean agglutinin (SBA) and Dolichos biflorus agglutinin (DBA). Monoclonal antibodies Y2/51 and HPL1 cross reacted with platelets and megakaryocytic cells from both species, whereas CLB-thromb/1 was unreactive with canine preparations. Only Y2/51 labelled megakaryocytic cells in paraffin-embedded samples. LCA, PSA, WGA and PHA-L labelled feline and canine platelets and different numbers of morphologically identifiable megakaryocytes and numerous other, mostly myeloid, cells. Immunoblots of dog and cat platelet lysates using Y2/51 visualized a single protein of 95 kDa (unreduced), a mol·wt value within the range of those reported for GP IIIa. Some of the platelet (but not necessarily megakaryocyte) glycoproteins reacting with LCA, PSA and WGA could be identified in lectin blots following one- or two (nonreduced/reduced)-dimensional sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE). Thus in dogs and cats, the immunohistochemical detection of GP IIIa (and eventually GP IIb/IIIa) rather than lectin binding patterns could be important for the diagnosis of megakaryoblastic leukaemias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号