首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary biliary cirrhosis (PBC) is an autoimmune liver disease with profound changes in different compartments of the immune system, including those involved in innate, and adaptive immunity. New data from epidemiological studies of PBC have reinforced the thesis that the cause for this relatively uncommon disease is likely to be a combination of both environmental factors and a susceptible genetic predisposition. Recent findings of abnormalities of the innate immune system in PBC suggest that they may serve as links between the environmental factors and the early events in PBC development. Viral and bacterial infections as well as xenobiotics are some of the potential environmental factors that have been implicated in this complex process. Identification of the etiological factors for PBC will point to new preventive or therapeutic treatments.  相似文献   

2.
The humoral immune response and antibody-mediated functions of B cells during viral infections are well described. However, we have limited understanding of antibody-independent B cell functions, such as cytokine production and antigen presentation, in acute and chronic viral infections and their role in protection and/or immunopathogenesis. Here, we summarize the current literature on these antibody-independent B cell functions and identify remaining knowledge gaps. B cell subsets produce anti- and pro-inflammatory cytokines, which can have both beneficial and detrimental effects during viral clearance. As professional antigen presenting cells, B cells also play an important role in immune regulation/shaping of the developing adaptive immune responses. Since B cells primarily express TLR7 and TLR9, we specifically discuss the role of Toll-like receptor (TLR)-mediated B cell responses to viral infections and their role in augmenting adaptive immunity through enhanced cytokine production and antigen presentation. However, viruses have evolved strategies to subvert TLR signaling and additional stimulation via B cell receptor (BCR) may be required to overcome the defective TLR response in B cells. To conclude, antibody-independent B cell functions seem to have an important role in regulating both acute and chronic viral infections and may form the basis for novel therapeutic approaches in treatment of viral infections in the future.  相似文献   

3.
An efficient adaptive immune response should prevent pathogen infections and tumor growth without causing significant damage to host constituents. A crucial event determining the balance between tolerance and immunity is antigen recognition by T cells on the surface of antigen presenting cells (APC). Several molecular contacts at the interface between T cells and APCs contribute to define the nature of the adaptive immune response against a particular antigen. Upon TCR engagement by a peptide-MHC complex (pMHC) on the surface of an APC, a specialized supra-molecular structure known as immunological synapse (IS) assembles at the interface between these two cells. This structure involves massive re-distribution of membrane proteins, including TCR and pMHC complexes, as well as co-stimulatory and adhesion molecules. Furthermore, IS assembly leads to several important intracellular events necessary for T cell activation, such as recruitment of signaling molecules and cytoskeleton rearrangements. Because IS assembly leads to major consequences on the function of T cells, several studies have attempted to identify both soluble and membrane-bound molecules that could contribute to modulate the IS function. Here we describe recent literature on the regulation of IS assembly and modulation by TCR/pMHC binding kinetics, chemokines and cytokines focusing on their role at controlling the balance between adaptive immunity and tolerance.  相似文献   

4.
Toxoplasma gondii is an intracellular parasite that frequently infects a large spectrum of warm-blooded animals. This parasite induces abortion and establishes both chronic and silent infections, particularly in the brain. Parasite penetration into the host activates a strong anti-parasite immune response. In the present paper, we will discuss the interplay between innate and adaptive immunity that occurs within the infected intestine to clear the parasite and to maintain intestinal homeostasis despite the exacerbation of an inflammatory immune response.  相似文献   

5.
Innate versus adaptive immunity in Candida albicans infection   总被引:3,自引:0,他引:3  
Candida albicans is a common opportunistic pathogen, causing both superficial and systemic infection. Clinical observations indicate that mucocutaneous infections are commonly associated with defective cell-mediated immune responses, whereas systemic infection is more frequently seen in patients with deficiencies in neutrophil number or function. Analysis of mechanisms of host resistance against gastrointestinal and oral infection in mouse models has demonstrated an absolute dependence on CD4(+) T cells, although clearance also involves phagocytic cells. Both IL-12 and TNF-alpha appear to be important mediators, but mouse strain-dependent variations in susceptibility to infection may be related to T-cell enhancement of production of phagocytic cells by the bone marrow. In murine systemic infection, the role of innate and adaptive responses is less well defined. Studies in immunodeficient and T-cell-depleted mice suggest that clearance of the yeast may be predominantly a function of the innate response, whereas the adaptive response may either limit tissue damage or have the potential to cause immunopathology, depending on the host genetic context in which the infection takes place.  相似文献   

6.
The limitations of currently available treatment for severe respiratory infection are demonstrated by the relatively fixed mortality associated with these infections despite advances in nutrition, vaccines, antibiotics, and critical care. This might be due in part to the changing spectrum of pathogens and development of drug resistance. Cytokines are potent molecules that function as growth factors and orchestrate both innate and adaptive immune responses. Several of these factors have entered the clinical arena to support or augment the immune response. Moreover, the use of cytokines has recently been expanded to patients without an overtly defective immune system but who have either significant infection or infection with drug resistant organisms. The use of cytokines as adjuvants in the treatment of respiratory infections is reviewed.  相似文献   

7.
The AIDS epidemic in the Developing World represents a major global crisis. It is imperative that we develop an effective vaccine. Vaccines are economically the most efficient means of controlling viral infections. However, the development of a vaccine against HIV-1 has been a formidable task, and in developing countries chronic parasitic infection adds another level of complexity to AIDS vaccine development. Helminthic and protozoan infections, common in developing countries, can result in a constant state of immune activation that is characterized by a dominant Th2 type of cytokine profile, high IgE levels, and eosinophilia. Such an immune profile may have an adverse impact on the efficacy of vaccines, in particular, an HIV-1 vaccine. Indeed, the CD8 cellular immune response and the corresponding Th1 type cytokines that enhance the CD8 cellular immune response are important for clearing many viral infections. It is believed that an antigen specific CD8 cellular immune response will be an important component of an HIV-1 vaccine.  相似文献   

8.
Antibody-mediated protective immunity in fungal infections   总被引:2,自引:0,他引:2  
The host response to fungal infection is the result of a complex interaction between the pathogen and the host's innate and adaptive immune system. Cell-mediated immunity is widely considered to be critical for the successful outcome of fungal infections. However, in recent years numerous studies have established that certain antibodies may play an important role in host immunoprotection against pathogenic fungi, through interaction with different cellular targets, such as mannans, heat shock proteins, capsular polysaccharides, surface proteins, and yeast killer toxin receptors, with mechanisms of action sometimes still undefined. This review summarizes the latest findings on the role of different types of antibodies in the antifungal defense against infections caused by epidemiologically important fungi, such as Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum, and others. New perspectives of antibody-mediated therapy, based on the availability of monoclonal and recombinant antibodies as well as genetically engineered antibody fragments of defined specificity, will be also envisaged and discussed.  相似文献   

9.
10.
Persson J  Vance RE 《Immunogenetics》2007,59(10):761-778
The interaction of bacterial pathogens with their hosts’ innate immune systems can be extremely complex and is often difficult to disentangle experimentally. Using mouse models of bacterial infections, several laboratories have successfully applied genetic approaches to identify novel host genes required for innate immune defense. In addition, a variety of creative bacterial genetic schemes have been developed to identify key bacterial genes involved in triggering or evading host immunity. In cases where both the host and pathogen are amenable to genetic manipulation, a combination of host and pathogen genetic approaches can be used. Focusing on bacterial infections of mice, this review summarizes the benefits and limitations of applying genetic analysis to the study of host–pathogen interactions. In particular, we consider how prokaryotic and eukaryotic genetic strategies can be combined, or “squared,” to yield new insights in host–pathogen biology.  相似文献   

11.
Leptin, a 16 kDa non-glycosylated polypeptide produced primarily by adipocytes and released into the systemic circulation, exerts a multitude of regulatory functions including energy utilization and storage, regulation of various endocrine axes, bone metabolism, and thermoregulation. In addition to leptin's best known role as regulator of energy homeostasis, several studies indicate that leptin plays a pivotal role in immune and inflammatory response. Because of its dual nature as a hormone and cytokine, leptin can be nowadays considered the link between neuroendocrine and immune system. The increase in leptin production that occurs during infections and inflammatory processes strongly suggests that this adipokine is a part of the cytokines network which governs inflammatory/immune response and host defence mechanisms. Indeed, leptin plays a relevant role in inflammatory processes involving either innate or adaptive immune responses. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions such as encephalomyelitis, type I diabetes, bowel inflammation and also articular degenerative diseases such as rheumatoid arthritis and osteoarthritis. Although the mechanisms by which leptin exerts its action as modulator of inflammatory/immune response are likely to be more complex than predicted and far to be completely depicted, there is a general consensus about its pivotal role as pro-inflammatory and immune-modulating agent. Here, we review the most recent advances on leptin biology with a particular attention to its adipokine facet, even though its role as metabolic hormone will be also addressed.  相似文献   

12.
Increased global temperature and associated changes to Arctic habitats will likely result in the northward advance of species, including an influx of pathogens novel to the Arctic. How species respond to these immunological challenges will depend in part on the adaptive potential of their immune response system. We compared levels of genetic diversity at a gene associated with adaptive immune response [Class II major histocompatibility complex (MHC), DQB exon 2] between populations of walrus (Odobenus rosmarus), a sea ice-dependent Arctic species. Walrus was represented by only five MHC DQB alleles, with frequency differences observed between Pacific and Atlantic populations. MHC DQB alleles appear to be under balancing selection, and most (80 %; n = 4/5) of the alleles were observed in walruses from both oceans, suggesting broad scale differences in the frequency of exposure and diversity of pathogens may be influencing levels of heterozygosity at DQB in walruses. Limited genetic diversity at MHC, however, suggests that walrus may have a reduced capacity to respond to novel immunological challenges associated with shifts in ecological communities and environmental stressors predicted for changing climates. This is particularly pertinent for walrus, since reductions in summer sea ice may facilitate both northward expansion of marine species and associated pathogens from more temperate regions, and exchange of marine mammals and associated pathogens through the recently opened Northwest Passage between the Atlantic and Pacific Oceans in the Canadian high Arctic.  相似文献   

13.
The first year of life represents a time of marked susceptibility to infections; this is particularly true for regions in sub-Saharan Africa. As innate immunity directs the adaptive immune response, the observed increased risk for infection as well as a suboptimal response to vaccination in early life may be due to less effective innate immune function. In this study, we followed a longitudinal cohort of infants born and raised in South Africa over the first year of life, employing the most comprehensive analysis of innate immune response to stimulation published to date. Our findings reveal rapid changes in innate immune development over the first year of life. This is the first report depicting dramatic differences in innate immune ontogeny between different populations in the world, with important implications for global vaccination strategies.  相似文献   

14.
Despite the important threat that emerging pathogens pose for the conservation of biodiversity as well as human health, very little is known about the adaptive potential of host species to withstand infections. We studied the quantitative genetic architecture responsible for the burden of the fungal pathogen Batrachochytrium dendrobatidis in a population of common toads in conjunction with other life‐history traits (i.e., body size and development rate) that may be affected by common selective pressures. We found a significant heritable component that is associated with fungal burden, which may allow for local adaptation to this pathogen to proceed. In addition, the high genetic correlation found between fungal burden and development time suggests that both traits have to be taken into account in order to assess the adaptive response of host populations to this emerging pathogen.  相似文献   

15.
Koyama S  Ishii KJ  Coban C  Akira S 《Cytokine》2008,43(3):336-341
In viral infections the host innate immune system is meant to act as a first line defense to prevent viral invasion or replication before more specific protection by the adaptive immune system is generated. In the innate immune response, pattern recognition receptors (PRRs) are engaged to detect specific viral components such as viral RNA or DNA or viral intermediate products and to induce type I interferons (IFNs) and other pro-inflammatory cytokines in the infected cells and other immune cells. Recently these innate immune receptors and their unique downstream pathways have been identified. Here, we summarize their roles in the innate immune response to virus infection, discrimination between self and viral nucleic acids and inhibition by virulent factors and provide some recent advances in the coordination between innate and adaptive immune activation.  相似文献   

16.
The immune response is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this interaction is unclear. Addressing this fundamental question will be critical for the development of effective vaccines for the rapidly rising older subpopulation that manifests increased prevalence of malignancies and infections. Therefore, we undertook the current study to investigate whether aging impairs toll-like receptor (TLR) function in myeloid dendritic cells and whether this leads to reduced T-cell priming. Our results demonstrate that innate TLR immune priming function of myeloid bone marrow derived and splenic dendritic cells (DC) is preserved with aging using both allogeneic and infectious murine experimental systems. In contrast, aging impairs in vitro and in vivo intrinsic T-cell function. Therefore, our results demonstrate that myeloid DCs manifest preserved TLR-mediated immune responses with aging. However, aging critically impairs intrinsic adaptive T-cell function.  相似文献   

17.
The development of subunit vaccines against most parasitic helminth infections will require a better understanding of the different components of a natural rejection process including (1) recognition of parasite antigens; (2) induction of protective immune response phenotypes; and (3) activation of appropriate immune effector mechanisms. While novel technologies have allowed significant progress to be made in the identification of candidate vaccine antigens, the large scale production of these antigens and their presentation to the host with appropriate adjuvant systems remains a major problem in vaccine research. Identification of the molecular interactions involved in the innate immune response to helminth infections and the application of new genomic and proteomic technologies are likely to lead to major advances in these research fields. Gastrointestinal nematode parasites and liver fluke are the most important helminth parasites of production animals. In recent years, a lot of new knowledge has been gathered on the immunobiology of the host-parasite interactions in these two infection systems, which has allowed new vaccination strategies to be considered. Functional genomic technologies such as gene expression analysis by microarrays, promise to further advance our understanding of the molecular pathways leading to protection against parasite infections. This will not only have implications for vaccine research, but also provide novel targets for drug development and genetic selection.  相似文献   

18.
Urinary tract infections (UTIs) cause patient morbidity and have a substantial economic impact. Half of all women will suffer a UTI at least once, and 25% of these women will have recurrent infections. That 75% of previously infected women do not become reinfected strongly suggests a role for an adaptive immune response. The goal of this study was to characterize the adaptive immune responses to uropathogenic Escherichia coli (UPEC), the predominant uropathogen. A novel murine model of UTI reinfection was developed using the prototypic cystitis UPEC isolate NU14 harboring a plasmid encoding OVA as a unique antigenic marker. Bacterial colonization of the bladder was quantified following one or more infections with NU14-OVA. Animals developed anti-OVA serum IgG and IgM titers after the initial infection and marked up-regulation of activation markers on splenic T cells. We observed a 95% reduction in bacterial colonization upon reinfection, and splenic leukocytes showed Ag-specific proliferation in vitro. Adoptive transfer of splenic T cells or passive transfer of serum from previously infected mice protected naive syngeneic mice from UPEC colonization. These findings support our hypothesis that adaptive immune responses to UPEC protect the bladder from reinfection and form the basis of understanding susceptibility to recurrent UTI in women.  相似文献   

19.
In vertebrates, the immune system consists of two arms of different characteristics: the innate and the acquired immune response. Parasites that are only shortly exposed to the immune system are most efficiently attacked by fast, constitutive innate immune mechanisms. Here, we experimentally selected within four fish families for high innate resistance versus susceptibility of three-spined sticklebacks (Gasterosteus aculeatus) against infection with the eye-fluke (Diplostomum pseudospathacaeum), a parasite whose metacercariae are protected from the immune system within the eye lens. We predicted that in families with high susceptibility, the adaptive immune system would be upregulated when challenged with infection. In accordance, we found that MHC class IIB expression is increased by approximately 50% in those lines selected for higher parasite load (i.e. low innate response). This suggests extensive genetic correlations between innate and adaptive immune system and/or crosstalk between both lines of defense. An efficient, specific innate immune response might reduce overall activation of the immune system and potentially alleviate associated effects of immunopathology.  相似文献   

20.
Host defence in vertebrates is achieved by the integration of two distinct arms of the immune system: the innate and adaptive responses. The innate response acts early after infection (within minutes), detecting and responding to broad cues from invading pathogens. The adaptive response takes time (days to weeks) to become effective, but provides the fine antigenic specificity required for complete elimination of the pathogen and the generation of immunologic memory. Antigen-independent recognition of pathogens by the innate immune system leads to the rapid mobilization of immune effector and regulatory mechanisms that provide the host with three critical advantages: (i) initiating the immune response (both innate and adaptive) and providing the inflammatory and co-stimulatory context for antigen recognition; (ii) mounting a first line of defence, thereby holding the pathogen in check during the maturation of the adaptive response; and (iii) steering the adaptive immune system towards the cellular or humoral responses most effective against the particular infectious agent. The quest for safer and more effective vaccines and immune-based therapies has taken on a sudden urgency with the increased threat of bioterrorism. Only a handful of vaccines covering a small proportion of potential biowarfare agents are available for human use (e.g. anthrax and small pox) and these suffer from poor safety profiles. Therefore, next generation biodefence-related vaccines and therapies with improved safety and the capacity to induce more rapid, more potent and broader protection are needed. To this end, strategies to target both the innate and adaptive immune systems will be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号