首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence to the 31P NMR spectra of poly[d(GC)] . poly [d(GC)],d(GC)4, phenylalanine tRNA (yeast) and mixtures of poly(A) + oligo(U) is presented. The 31P NMR spectra of mixtures of complementary RNA and of the poly d(GC) self-complementary DNA provide torsional information on the phosphate ester conformation in the double, triple, and "Z" helix. The increasing downfield shift with temperature of the single-strand nucleic acids provides a measure of the change in the phosphate ester conformation in the single helix to coil conversion. A separate upfield peak (20-60% of the total phosphates) is observed at lower temperatures in the oligo(U) . poly(A) mixtures which is assigned to the double helix/triple helix. Proton NMR and UV spectra confirm the presence of the multistrand forms. The 31P chemical shift for the double helix/triple helix is 0.2-0.5 ppm upfield from the chemical shift for the single helix which in turn is 1.0 ppm upfield from the chemical shift for the random coil conformation.  相似文献   

2.
Raman spectra of six synthetic polydeoxyribonucleotide duplexes with different base sequences have been examined in aqueous solutions with different salt or nucleotide concentrations. Detailed conformational differences have been indicated between B and Z forms of poly[d(G-C)] X poly[d(G-C)], between B forms of poly[d(G-C)] X poly[d(G-C)] and poly[d(G-m5C)] X poly[d(G-m5C)], between A and B forms of poly(dG) X poly(dC), between B and "CsF" forms of poly[d(A-T)] X poly[d(A-T)], between B forms of poly[d(A-U)] X poly[d(A-U)] and poly[d(A-T)] X poly[d(A-T)], and between low- and high-salt (CsF) forms of poly(dA) X poly(dT). The Raman spectrum of calf-thymus DNA in aqueous solution was also observed and was compared with the Raman spectra of its fibers in A, B, and C forms.  相似文献   

3.
31P- and 1H-nmr and laser Raman spectra have been obtained for poly[d(G-T)]·[d(C-A)] and poly[d(A-T)] as a function of both temperature and salt. The 31P spectrum of poly[d(G-T)]·[d(C-A)] appears as a quadruplet whose resonances undergo separation upon addition of CsCl to 5.5M. 1H-nmr measurements are assigned and reported as a function of temperature and CsCl concentration. One dimensional nuclear Overhauser effect (NOE) difference spectra are also reported for poly[d(G-T)]·[d(C-A)] at low salt. NOE enhancements between the H8 protons of the purines and the C5 protons of the pyrimidines, (H and CH3) and between the base and H-2′,2″ protons indicate a right-handed B-DNA conformation for this polymer. The NOE patterns for the TH3 and GH1 protons in H2O indicate a Watson–Crick hydrogen-bonding scheme. At high CsCl concentrations there are upfield shifts for selected sugar protons and the AH2 proton. In addition, laser Raman spectra for poly[d(A-T)] and poly[d(G-T)]·[d(C-A)] indicate B-type conformations in low and high CsCl, with predominantly C2′-endo sugar conformations for both polymers. Also, changes in base-ring vibrations indicate that Cs+ binds to O2 of thymine and possibly N3 of adenine in poly[d(G-T)]·[d(C-A)] but not in poly[d(A-T)]. Further, 1H measurements are reported for poly[d(A-T)] as a function of temperature in high CsCl concentrations. On going to high CsCl there are selective upfield shifts, with the most dramatic being observed for TH1′. At high temperature some of the protons undergo severe changes in linewidths. Those protons that undergo the largest upfield shifts also undergo the most dramatic changes in linewidths. In particular TH1′, TCH3, AH1′, AH2, and TH6 all undergo large changes in linewidths, whereas AH8 and all the H-2′,2″ protons remain essentially constant. The maximum linewidth occurs at the same temperature for all protons (65°C). This transition does not occur for d(G-T)·d(C-A) at 65°C or at any other temperature studied. These changes are cooperative in nature and can be rationalized as a temperature-induced equilibrium between bound and unbound Cs+, with duplex and single-stranded DNA. NOE measurements for poly[d(A-T)] indicate that at high Cs+ the polymer is in a right-handed B-conformation. Assignments and NOE effects for the low-salt 1H spectra of poly[d(A-T)] agree with those of Assa-Munt and Kearns [(1984) Biochemistry 23 , 791–796] and provide a basis for analysis of the high Cs+ spectra. These results indicate that both polymers adopt a B-type conformation in both low and high salt. However, a significant variation is the ability of the phosphate backbone to adopt a repeat dependent upon the base sequence. This feature is common to poly[d(G-T)]·[d(C-A)], poly[d(A-T)], and some other pyr–pur polymers [J. S. Cohen, J. B. Wouten & C. L Chatterjee (1981) Biochemistry 20 , 3049–3055] but not poly[d(G-C)].  相似文献   

4.
Synthetic DNAs were prepared containing 6-methyl adenine (m6A) in place of adenine and 5-ethyl uracil (Et5U) or 5-methoxymethyl uracil (Mm5U) in place of thymine. All three modifications destabilized duplex DNAs to varying degrees. The binding of ethidium was studied to analogues of poly[d(AT)]. There was no evidence of cooperative binding and the "neighbour exclusion rule" was obeyed in all cases although the binding constant to poly[d(m6AT)] was approximately 6 fold higher than to poly[d(AT)]. 31P NMR spectra were recorded in increasing concentrations of CsF. Poly[d(AEt5U)] showed two well-resolved signals separated by 0.55 ppm in 1 M CsF compared to 0.32 ppm for poly[d(AT)] under identical conditions. In contrast, poly[d(AMm5U)] and poly[d(m6AT)] showed two signals separated by 0.28 ppm and 0.15 ppm respectively, only when the concentration of CsF was raised to 2 M. The signals for poly[d(AT)] in 2 M CsF were better resolved and were separated by 0.41 ppm. These results suggest that minor modifications to the bases may have conformational effects which could be recognized by DNA-binding proteins.  相似文献   

5.
The rate constants of 1H----3H exchange between water and C8H-groups of purine residues of alternating polynucleotides: poly[d(A-C)].poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)], as well as Escherichia coli DNA, dAMP and dGMP, in solutions with high concentration (4.3 or 6 M) CsF, in water ethanol (60%) solution and (in comparison) in 0.15 M NaCl were determined at 25 degrees C. The 1H----3H exchange rate exchange rate constants for adenylic (kA) and guanylic (kG) residues of polynucleotides were compared with the corresponding constant for DNA and mononucleotides. It was shown that at conditions when poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)] exhibit the "X-form" CD spectrum, alteration of exchange rates in polynucleotides (approximately 2-fold increase in kA in CSF and approximately 1.5-fold decrease in kA and kG in 60% ethanol with 0.15 M NaCl) is due to the effect of solvents on the chemical reactivity of purine residues, but does not reflect a conformational transition. The analysis of these results allows us to conclude, that alternating polynucleotides under the above mentioned conditions retain roughly the conformations inherent in them in 0.15 M NaCl: poly[d(A-C)].poly[d(G-T)] conformation in 4.3 m CsF or 60% ethanol differs only insignificantly from the "canonic" B-DNA, whereas the poly[d(A-T)].poly[d(A-T)] conformation in 6 M CSF corresponds to B-alternating DNA.  相似文献   

6.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

7.
Novel 1H nuclear magnetic resonance (NMR) resonances, arising from exchangeable protons and centered at approximately 11.2 and 10.1 parts per million (ppm), have been observed in the low-field spectrum (10-15 ppm) of the chicken erythrocyte core particle [145 +/- 2 base pairs (bp)]. These peaks are located upfield from the normal adenine-thymine (A-T) and guanine-cytosine (G-C) imino peaks characteristic of B-form deoxyribonucleic acid (DNA) and are not observed in free DNA under identical conditions. The appearance of the new peaks is ionic strength dependent and temperature-reversible below 75 degrees C. At 25 degrees C, the upfield peak area represents 5% of the DNA base pairs (7 bp), while between 45 and 55 degrees C, the area increases to 18%, affecting approximately 25 bp. Area increases in the upfield resonances result in a complementary decrease in the A-T and G-C imino peaks found between 12 and 14 ppm. We believe these novel proton signals represent a histone-induced DNA conformational change which involves localized alteration of base pairing in the core particle.  相似文献   

8.
27Al and 31P nuclear magnetic resonance (NMR) spectroscopies were used to investigate aluminum interactions at pH 3.4 with model membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). A solution state 27Al NMR difference assay was developed to quantify aluminum binding to POPC multilamellar vesicles (MLVs). Corresponding one-dimensional (1D) fast magic angle spinning (MAS) 31P NMR spectra showed that aluminum induced the appearance of two new isotropic resonances for POPC shifted to -6.4 ppm and -9.6 ppm upfield relative to, and in slow exchange with, the control resonance at -0.6 ppm. Correlation of the (27)Al and (31)P NMR binding data revealed a 1:2 aluminum:phospholipid stoichiometry in the aluminum-bound complex at -9.6 ppm and a 1:1 aluminum:phospholipid stoichiometry in that at -6.4 ppm. Slow MAS 31P NMR spectra demonstrated shifts in the anisotropic chemical shift tensor components of the aluminum-bound POPC consistent with a close coordination of aluminum with phosphorus. A model of the aluminum-bis-phospholipid complex is proposed on the basis of these findings.  相似文献   

9.
Synthetic RNA poly[r(A-T)] has been synthesized and its CD spectral properties compared to those of poly[r(A-U)], poly[d(A-T)], and poly[d(A-U)] in various salt and ethanolic solutions. The CD spectra of poly[r(A-T)] in an aqueous buffer and of poly[d(A-T)] in 70.8% v/v ethanol are very similar, suggesting that they both adopt the same A conformation. On the other hand, the CD spectra of poly[r(A-T)] and of poly[r(A-U)] differ in aqueous, and even more so in ethanolic, solutions. We have recently observed a two-state salt-induced isomerization of poly[r(A-U)] into chiral condensates, perhaps of Z-RNA [M. Vorlícková, J. Kypr, and T. M. Jovin, (1988) Biopolymers 27, 351-354]. It is shown here that poly[r(A-T)] does not undergo this isomerization. Both the changes in secondary structure and tendency to aggregation are different for poly[r(A-T)] and poly[r(A-U)] in aqueous salt solutions. In most cases, the CD spectrum of poly[r(A-U)] shows little modification of its CD spectrum unless the polymer denatures or aggregates, whereas poly[r(A-T)] displays noncooperative alterations in its CD spectrum and a reduced tendency to aggregation. At high NaCl concentrations, poly[r(A-T)] and poly[r(A-U)] condense into psi(-) and psi(+) structures, respectively, indicating that the type of aggregation is dictated by the polynucleotide chemical structure and the corresponding differences in conformational properties.  相似文献   

10.
The binding of tetrapeptide Lys-Trp-Gly-Lys OtBu to d-CpGpCpG has been studied by proton NMR at 90 MHz and 400 MHz. Changes in chemical shift have been observed in the temperature range 275-335 K. Interaction with tetrapeptide Lys-Ala-Ala-Lys NHEt has been studied in order to ascertain the contribution to changes in chemical shift due to the electrostatic interactions alone. On addition of Lys-Trp-Gly-Lys OtBu to d-CGCG, the H-5 and H-6 resonances of internal cytosine shift upfield about 0.04-0.07 ppm at 275 K. The upfield shift in external Cytosine are relatively small about 0.01 ppm. Changes in chemical shifts of internal and external Guanine (H-8) are indistinguishable being in the range 0.02-0.11 ppm. The changes in chemical shift of Tryptophan ring protons on binding to oligonucleotide are considerably large, it being typically an upfield shift to 0.18-0.53 ppm at 275 K. The changes in chemical shift of all resonances decrease with temperature. The observations suggest intercalation of Tryptophan ring in d-CGCG. Using the magnetic anisotropy ring current shifts, overlap geometries of Tryptophan ring in d(C-G) and d(G-C) sites of d-CGCG have been proposed. The same has been verified by using Corey-Pauling-Koltun models.  相似文献   

11.
Infrared dichroism measurements of oriented films of poly(dA)·poly(dT) and poly[d(A-T)]·poly[d(A-T)] have been made under the conditions of low salts content and high humidity for which the geometry is known. The angles which the transition moments make with the helix axis are compared with the orientations of the corresponding bonds. Except for the in-plane base model of poly[(A-T)]·poly[d(A-T)], there is no agreement. This may imply either that a model which assumes bonds and transition moments to be colinear is not acceptable or that x-ray data are inaccurate. These possibilities are discussed especially with respect to phosphate group orientation. An appendix gives the derivations of dichroic-ratio expressions for helical molecules of different symmetry types.  相似文献   

12.
31P NMR studies were undertaken to determine how potassium ion increases the cofactor affinity of Escherichia coli D-serine dehydratase, a model pyridoxal 5'-phosphate requiring enzyme that converts the growth inhibitor D-serine to pyruvate and ammonia. Potassium ion was shown to promote the appearance of a second upfield shifted cofactor 31P resonance at 4.0 ppm (pH 7.8, 25 degrees C), that increased in area at the expense of the resonance at 4.4 ppm observed in the absence of K+. Na+ antagonized the K+ promoted appearance of the second resonance. These observations suggest that K+ and Na+ stabilize conformational states that differ with respect to O-P-O bond angle, conformation, and/or hydrogen bonding of the phosphate group. An analysis of the dependence of the relative intensities of the two resonances on the K+ concentration yielded a value of ca. 10 mM for the equilibrium constant for dissociation of K+ from D-serine dehydratase. The chemical shift difference between the two resonances indicated that the K+-stabilized and Na+-stabilized forms of the enzyme interconvert at a frequency less than 16 s-1 at pH 7.8, 25 degrees C.  相似文献   

13.
Vinarov DA  Miziorko HM 《Biochemistry》2000,39(12):3360-3368
Binding of [1,2-(13)C]acetyl-CoA to wild-type 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase is characterized by large upfield shifts for C1 (184 ppm, Deltadelta = 20 ppm) and C2 (26 ppm, Deltadelta = 7 ppm) resonances that are attributable to formation of the covalent [1,2 -(13)C]acetyl-S-enzyme reaction intermediate. NMR spectra of [1, 2-(13)C]acetyl-S-enzyme prepared in H(2)(16)O versus H(2)(18)O indicate a 0.055 ppm upfield shift of the C1 resonance in the presence of the heavier isotope. The magnitude of this (18)O-induced (13)C shift suggests that the 184 ppm resonance is attributable to a reaction intermediate in which C1 exhibits substantial carbonyl character. No significant shift of the C2 resonance occurs. These observations suggest that, in the absence of second substrate (acetoacetyl-CoA), enzymatic addition of H(2)(18)O to the C1 carbonyl of acetyl-S-enzyme occurs to transiently produce a tetrahedral species. This tetrahedral adduct exchanges oxygen upon backward collapse to re-form the sp(2)-hybridized thioester carbonyl. In contrast with HMG-CoA synthase, C378G Zoogloea ramigera beta-ketothiolase, which also forms a (13)C NMR-observable covalent acetyl-enzyme species, exhibits no (18)O-induced shift. Formation of the [(13)C]acetyl-S-enzyme reaction intermediate of HMG-CoA synthase in D(2)O versus H(2)O is characterized by a time-dependent isotope-induced upfield shift of the C1 resonance (maximal shift = 0. 185 ppm) in the presence of the heavier isotope. A more modest upfield shift (0.080 ppm) is observed for C378G Z. ramigera beta-ketothiolase in similar experiments. The slow kinetics for the development of the deuterium-induced (13)C shift in the HMG-CoA synthase experiments suggest a specific interaction (hydrogen bond) with a slowly exchangeable proton (deuteron) of a side chain/backbone of an amino acid residue at the active site.  相似文献   

14.
CD spectra were obtained for eight synthetic double-stranded DNA polymers down to at least 175 nm in the vacuum uv. Three sets of sequence isomers were studied: (a) poly[d(A-C).d(G-T)] and poly[d(A-G).d(C-T)], (b) poly[d(A-C-C).d(G-G-T)] and poly[d(A-C-G).d(C-G-T)], and (c) poly[d(A).d(T)], poly[d(A-T).d(A-T)], poly[d(A-A-T).d(A-T-T)], and poly[d(A-A-T-T).d(A-A-T-T)]. There were significant differences in the CD spectra at short wavelengths among each set of sequence isomers. The (G.C)-containing sequences had the largest vacuum uv bands, which were positive and in the wavelength range of 180-191 nm. There were no large negative bands at longer wavelengths, consistent with the polymers all being in right-handed conformations. Among the set of sequences containing only A.T base pairs, poly[d(A).d(T)] had the largest vacuum uv CD band, which was at 190 nm. This CD band was not present in the spectra of the other (A.T)-rich polymers and was absent from two first-neighbor estimations of the poly[d(A).d(T)] spectrum obtained from the other three sequences. We concluded that the sequence dependence of the vacuum uv spectra of the (A.T)-rich polymers was due in part to the fact that poly[d(A).d(T)] exists in a noncanonical B conformation.  相似文献   

15.
The secondary structures of double-stranded poly[d(A-T)].poly[d(A-T)] in films have been studied by IR spectroscopy with three different counterions (Na+, Cs+, and Ni2+) and a wide variety of water content conditions (relative humidity between 100 and 47%). In addition to the A-, B-, C-, and D-form spectra, a new IR spectrum has been obtained in the presence of nickel ions. The IR spectra of Ni2+-poly[d(A-T)].poly[d(A-T)] films are analyzed by comparison with previously assigned IR spectra of left-handed poly[d(G-C)].poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)], and it is possible to conclude that they reflect a Z-type structure for poly[d(A-T)].poly[d(A-T)]. The Z conformation has been favored by the high polynucleotide concentration, by the low water content of the films, and by specific interactions of the transition metal ions with the purine bases stabilized in a syn conformation. A structuration of the water hydration molecules around the double-stranded Ni2+-poly[d(A-T)].poly[d(A-T)] is shown by the presence of a strong sharp water band at 1615 cm-1.  相似文献   

16.
Equilibrium binding experiments using fluorescence and absorption techniques have been performed throughout a wide concentration range (1 nM to 30 microM) of the dye Hoechst 33258 and several DNAs. The most stable complexes found with calf thymus DNA, poly[d(A-T)], d(CCGGAATTCCGG), and d(CGCGAATTCGCG) all have dissociation constants in the range (1-3) X 10(-9) M-1. Such complexes on calf thymus DNA occur with a frequency of about 1 binding site per 100 base pairs, and evidence is presented indicating a spectrum of sequence-dependent affinities with dissociation constants extending into the micromolar range. In addition to these sequence-specific binding sites on the DNA, the continuous-variation method of Job reveals distinct stoichiometries of dye-poly[d(A-T)] complexes corresponding to 1, 2, 3, 4, and 6 dyes per 5 A-T base pairs and even up to 1 and 2 (and possibly more) dyes per backbone phosphate. Models are suggested to account for these stoichiometries. With poly[d(G-C)] the stoichiometries are 1-2 dyes per 5 G-C pairs in addition to 1 and 2 dyes per backbone phosphate. Thermodynamic parameters for formation of the tightest binding complex between Hoechst 33258 and poly[d(A-T)] or d-(CCGGAATTCCGG) are determined. Hoechst 33258 binding to calf thymus DNA, chicken erythrocyte DNA, and poly[d(A-T)] exhibits an ionic strength dependence similar to that expected for a singly-charged positive ion. This ionic strength dependence remains unchanged in the presence of 25% ethanol, which decreases the affinity by 2 orders of magnitude. In addition, due to its strong binding, Hoechst 33258 easily displaces several intercalators from DNA.  相似文献   

17.
We examined the binding geometry of Co-meso-tetrakis (N-methyl pyridinium-4-yl)porphyrin, Co-meso-tetrakis (N-n-butyl pyridinium-4-yl)porphyrin and their metal-free ligands to poly[d(A-T)(2)] and poly[d(G-C)(2)] by optical spectroscopic methods including absorption, circular and linear dichroism spectroscopy, and fluorescence energy transfer technique. Signs of an induced CD spectrum in the Soret band depend only on the nature of the DNA sequence; all porphyrins exhibit negative CD when bound to poly[d(G-C)(2)] and positive when bound to poly[d(A-T)(2)]. Close analysis of the linear dichroism result reveals that all porphyrins exhibit outside binding when complexed with poly[d(A-T)(2)], regardless of the existence of a central metal and side chain. However, in the case of poly[d(G-C)(2)], we observed intercalative binding mode for two nonmetalloporphyrins and an outside binding mode for metalloporphyrins. The nature of the outside binding modes of the porphyrins, when complexed with poly[d(A-T)(2)] and poly[d(G-C)(2)], are quite different. We also demonstrate that an energy transfer from the excited nucleo-bases to porphyrins can occur for metalloporphyrins.  相似文献   

18.
The interaction of Escherichia coli RNA polymerase with poly[d(A-T)] and poly[d-(I-C)] was studied by difference absorption spectroscopy at temperatures, from 5 to 45 degrees C in the absence and presence of Mg2+. The effect of KCl concentration, at a fixed temperature, was studied from 12.5 to 400 mM. Difference absorption experiments permitted calculation of the extent of DNA opening induced by RNA polymerase and estimation of the equilibrium constant associated with the isomerization from a closed to an open RNA polymerase-DNA complex. delta H0 and delta S0 for the closed-to-open transition with poly[d(A-T)] or poly[d(I-C)] complexed with RNA polymerase are significantly lower than the values associated with the helix-to-coil transition for the free polynucleotides. For the RNA polymerase complexes with poly[d(A-T)] and poly[d(I-C)] in 50 mM KCl, delta H0 approximately 15-16 kcal/mol (63-67 kJ/mol) and delta S0 approximately 50-57 cal/K per mol (209-239 J/K per mol). The presence of Mg2+ does not change these parameters appreciably for the RNA polymerase-poly[d(A-T)] complex, but for the RNA polymerase-poly[d(I-C)] complex in the presence of Mg2+, the delta H0 and delta S0 values are larger and temperature-dependent, with delta H0 approximately 22 kcal/mol (92 kJ/mol) and delta S0 approximately 72 cal/K per mol (approx. 300 J/K per mol) at 25 degrees C, and delta Cp0 approximately 2 kcal/K per mol (approx. 8.3 kJ/K per mol). The circular dichroism (CD) changes observed for helix opening induced by RNA polymerase are qualitatively consistent with the thermally induced changes observed for the free polynucleotides, supporting the difference absorption method. The salt-dependent studies indicate that two monovalent cations are released upon helix opening. For poly[d(A-T)], the temperature-dependence of enzyme activity correlates well with the helix opening, implying this step to be the rate-determining step. In the case of poly[d(I-C)], the same is not true, and so the rate-determining step must be a process subsequent to helix opening.  相似文献   

19.
Circular dichroism and UV absorption data showed that poly[d(A-C).d(G-T)] (at 0.01M Na+ (phosphate), 20 degrees C) underwent two reversible conformational transitions upon lowering of the pH. The first transition was complete at about pH 3.9 and resulted in an acid form of the polymer that was most likely a modified, protonated duplex. The second transition occurred between pH 3.9 and 3.4 and consisted of the denaturation of this protonated duplex to the single strands. UV absorption and CD data also showed that the separated poly[d(A-C)] strand formed two acid-induced self-complexes with pKa values of 6.1 and 4.7 (at 0.01M Na+). However, neither one of these poly[d(A-C)] self-complexes was part of the acid-induced rearrangements of the duplex poly[d(A-C).d(G-T)]. Acid titration of the separated poly[d(G-T)] strand, under similar conditions, did not show the formation of any protonated poly[d(G-T)] self-complexes. In contrast to poly[d(A-C).d(G-T)], poly[d(A-T).d(A-T)] underwent only one acid-induced transition, which consisted of the denaturation of the duplex to the single strands, as the pH was lowered from 7 to 3.  相似文献   

20.
The kinetics of the hydrogen-deuterium exchange reactions of double-helical poly[d(A-T)]·poly[d(A-T)], poly(dA)·poly(dT), and constituent nucleosides (deoxyadenosine and thymidine) have been examined at various temperatures by stopped-flow ultraviolet spectrophotometry, in the spectral region 240–300 nm. The results were interpreted on the basis of a mechanism of the hydrogen exchange reaction of a helical polynucleotide, proposed by Englander and colleagues as well as by the Tsuboi and Nakanishi group. It was concluded that the rates of the base-pair opening reactions are nearly equal to one another in double-helical DNAs, irrespective of the base sequence. On the other hand, the free energy required for bringing the open segment at a particular base-pair was found to be much greater for poly(dA)·poly(dT) than for poly[d(A-T)]· poly[d(A-T)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号