首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intrinsically disordered proteins (IDPs) do not adopt stable three-dimensional structures in physiological conditions, yet these proteins play crucial roles in biological phenomena. In most cases, intrinsic disorder manifests itself in segments or domains of an IDP, called intrinsically disordered regions (IDRs), but fully disordered IDPs also exist. Although IDRs can be detected as missing residues in protein structures determined by X-ray crystallography, no protocol has been developed to identify IDRs from structures obtained by Nuclear Magnetic Resonance (NMR). Here, we propose a computational method to assign IDRs based on NMR structures. We compared missing residues of X-ray structures with residue-wise deviations of NMR structures for identical proteins, and derived a threshold deviation that gives the best correlation of ordered and disordered regions of both structures. The obtained threshold of 3.2 Å was applied to proteins whose structures were only determined by NMR, and the resulting IDRs were analyzed and compared to those of X-ray structures with no NMR counterpart in terms of sequence length, IDR fraction, protein function, cellular location, and amino acid composition, all of which suggest distinct characteristics. The structural knowledge of IDPs is still inadequate compared with that of structured proteins. Our method can collect and utilize IDRs from structures determined by NMR, potentially enhancing the understanding of IDPs.  相似文献   

3.
Intrinsically disordered proteins (IDPs) are crucial players in various cellular activities. Several experimental and computational analyses have been conducted to study structural pliability and functional potential of IDPs. In spite of active research in past few decades, what induces structural disorder in IDPs and how is still elusive. Many studies testify that sequential and spatial neighbours often play important roles in determining structural and functional behaviour of proteins. Considering this fact, we assessed sequence neighbours of intrinsically disordered regions (IDRs) to understand if they have any role to play in inducing structural flexibility in IDPs. Our analysis includes 97% eukaryotic IDPs and 3% from bacteria and viruses. Physicochemical and structural parameters including amino acid propensity, hydrophobicity, secondary structure propensity, relative solvent accessibility, B-factor and atomic packing density are used to characterise the neighbouring residues of IDRs (NRIs). We show that NRIs exhibit a unique nature, which makes them stand out from both ordered and disordered residues. They show correlative occurrences of residue pairs like Ser-Thr and Gln-Asn, indicating their tendency to avoid strong biases of order or disorder promoting amino acids. We also find differential preferences of amino acids between N- and C-terminal neighbours, which might indicate a plausible directional effect on the dynamics of adjacent IDRs. We designed an efficient prediction tool using Random Forest to distinguish the NRIs from the ordered residues. Our findings will contribute to understand the behaviour of IDPs, and may provide potential lead in deciphering the role of IDRs in protein folding and assembly.  相似文献   

4.
The past decade has witnessed great advances in our understanding of protein structure‐function relationships in terms of the ubiquitous existence of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). The structural disorder of IDPs/IDRs enables them to play essential functions that are complementary to those of ordered proteins. In addition, IDPs/IDRs are persistent in evolution. Therefore, they are expected to possess some advantages over ordered proteins. In this review, we summarize and survey nine possible advantages of IDPs/IDRs: economizing genome/protein resources, overcoming steric restrictions in binding, achieving high specificity with low affinity, increasing binding rate, facilitating posttranslational modifications, enabling flexible linkers, preventing aggregation, providing resistance to non‐native conditions, and allowing compatibility with more available sequences. Some potential advantages of IDPs/IDRs are not well understood and require both experimental and theoretical approaches to decipher. The connection with protein design is also briefly discussed.  相似文献   

5.

Background

Intrinsically disordered proteins (IDPs) and regions (IDRs) perform a variety of crucial biological functions despite lacking stable tertiary structure under physiological conditions in vitro. State-of-the-art sequence-based predictors of intrinsic disorder are achieving per-residue accuracies over 80%. In a genome-wide study of intrinsic disorder in human genome we observed a big difference in predicted disorder content between confirmed and putative human proteins. We investigated a hypothesis that this discrepancy is not correct, and that it is due to incorrectly annotated parts of the putative protein sequences that exhibit some similarities to confirmed IDRs, which lead to high predicted disorder content.

Methods

To test this hypothesis we trained a predictor to discriminate sequences of real proteins from synthetic sequences that mimic errors of gene finding algorithms. We developed a procedure to create synthetic peptide sequences by translation of non-coding regions of genomic sequences and translation of coding regions with incorrect codon alignment.

Results

Application of the developed predictor to putative human protein sequences showed that they contain a substantial fraction of incorrectly assigned regions. These regions are predicted to have higher levels of disorder content than correctly assigned regions. This partially, albeit not completely, explains the observed discrepancy in predicted disorder content between confirmed and putative human proteins.

Conclusions

Our findings provide the first evidence that current practice of predicting disorder content in putative sequences should be reconsidered, as such estimates may be biased.
  相似文献   

6.

Background

Analyzing the amino acid sequence of an intrinsically disordered protein (IDP) in an evolutionary context can yield novel insights on the functional role of disordered regions and sequence element(s). However, in the case of many IDPs, the lack of evolutionary conservation of the primary sequence can hamper the study of functionality, because the conservation of their disorder profile and ensuing function(s) may not appear in a traditional analysis of the evolutionary history of the protein.

Results

Here we present DisCons (Disorder Conservation), a novel pipelined tool that combines the quantification of sequence- and disorder conservation to classify disordered residue positions. According to this scheme, the most interesting categories (for functional purposes) are constrained disordered residues and flexible disordered residues. The former residues show conservation of both the sequence and the property of disorder and are associated mainly with specific binding functionalities (e.g., short, linear motifs, SLiMs), whereas the latter class correspond to segments where disorder as a feature is important for function as opposed to the identity of the underlying sequence (e.g., entropic chains and linkers). DisCons therefore helps with elucidating the function(s) arising from the disordered state by analyzing individual proteins as well as large-scale proteomics datasets.

Conclusions

DisCons is an openly accessible sequence analysis tool that identifies and highlights structurally disordered segments of proteins where the conformational flexibility is conserved across homologs, and therefore potentially functional. The tool is freely available both as a web application and as stand-alone source code hosted at http://pedb.vib.be/discons.  相似文献   

7.
The sequence–structure–function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well‐defined three‐dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.  相似文献   

8.

Background

Intrinsically disordered regions are enriched in short interaction motifs that play a critical role in many protein-protein interactions. Since new short interaction motifs may easily evolve, they have the potential to rapidly change protein interactions and cellular signaling. In this work we examined the dynamics of gain and loss of intrinsically disordered regions in duplicated proteins to inspect if changes after genome duplication can create functional divergence. For this purpose we used Saccharomyces cerevisiae and the outgroup species Lachancea kluyveri.

Principal Findings

We find that genes duplicated as part of a genome duplication (ohnologs) are significantly more intrinsically disordered than singletons (p<2.2e-16, Wilcoxon), reflecting a preference for retaining intrinsically disordered proteins in duplicate. In addition, there have been marked changes in the extent of intrinsic disorder following duplication. A large number of duplicated genes have more intrinsic disorder than their L. kluyveri ortholog (29% for duplicates versus 25% for singletons) and an even greater number have less intrinsic disorder than the L. kluyveri ortholog (37% for duplicates versus 25% for singletons). Finally, we show that the number of physical interactions is significantly greater in the more intrinsically disordered ohnolog of a pair (p = 0.003, Wilcoxon).

Conclusion

This work shows that intrinsic disorder gain and loss in a protein is a mechanism by which a genome can also diverge and innovate. The higher number of interactors for proteins that have gained intrinsic disorder compared with their duplicates may reflect the acquisition of new interaction partners or new functional roles.  相似文献   

9.
Nuclear magnetic resonance (NMR) has long been instrumental in the characterization of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). This method continues to offer rich insights into the nature of IDPs in solution, especially in combination with other biophysical methods such as small-angle scattering, single-molecule fluorescence, electron paramagnetic resonance (EPR), and mass spectrometry. Substantial advances have been made in recent years in studies of proteins containing both ordered and disordered domains and in the characterization of problematic sequences containing repeated tracts of a single or a few amino acids. These sequences are relevant to disease states such as Alzheimer's, Parkinson's, and Huntington's diseases, where disordered proteins misfold into harmful amyloid. Innovative applications of NMR are providing novel insights into mechanisms of protein aggregation and the complexity of IDP interactions with their targets. As a basis for understanding the solution structural ensembles, dynamic behavior, and functional mechanisms of IDPs and IDRs, NMR continues to prove invaluable.  相似文献   

10.

Background

The Cancer-Testis antigens (CTA) are proteins expressed in human germ line and certain cancer cells. CTAs form a large gene family, representing 10% of X-chromosomal genes. They have high potential for cancer-specific immunotherapy. However, their biological functions are currently unknown. Prostate associated genes (PAGE) are characterized as CTAs. PAGE5 is one of six proteins belonging to this protein family, also called CT16.

Methodology/Principal findings

In this study we show, using bioinformatics, chromatographic and solution state NMR spectroscopic methods, that PAGE5 is an intrinsically disordered protein (IDP).

Conclusion/Significance

The study stands out as the first time structural characterization of the PAGE family protein and introduces how solution state NMR spectroscopy can be effectively utilized for identification of molecular recognition regions (MoRF) in IDPs, known often as transiently populated secondary structures.  相似文献   

11.
固有无序蛋白质是一类在生理条件下缺乏稳定三维结构而具有正常功能,参与信号转导、转录调控、胁迫应答等多种生物学过程的蛋白质.植物中许多逆境响应蛋白是固有无序蛋白质,通过其结构无序或部分无序区域在蛋白质 蛋白质、蛋白质 膜脂、蛋白质 核酸的互作中发挥重要作用.本文主要对固有无序蛋白质的类别、氨基酸组成和结构特点以及在逆境胁迫下其稳定细胞膜、保护核酸和蛋白质、调控基因表达等分子功能进行综述,以拓展对逆境胁迫下蛋白质作用分子机制的认识.  相似文献   

12.

Background

Intrinsically Disordered Proteins (IDPs) lack an ordered three-dimensional structure and are enriched in various biological processes. The Molecular Recognition Features (MoRFs) are functional regions within IDPs that undergo a disorder-to-order transition on binding to a partner protein. Identifying MoRFs in IDPs using computational methods is a challenging task.

Methods

In this study, we introduce hidden Markov model (HMM) profiles to accurately identify the location of MoRFs in disordered protein sequences. Using windowing technique, HMM profiles are utilised to extract features from protein sequences and support vector machines (SVM) are used to calculate a propensity score for each residue. Two different SVM kernels with high noise tolerance are evaluated with a varying window size and the scores of the SVM models are combined to generate the final propensity score to predict MoRF residues. The SVM models are designed to extract maximal information between MoRF residues, its neighboring regions (Flanks) and the remainder of the sequence (Others).

Results

To evaluate the proposed method, its performance was compared to that of other MoRF predictors; MoRFpred and ANCHOR. The results show that the proposed method outperforms these two predictors.

Conclusions

Using HMM profile as a source of feature extraction, the proposed method indicates improvement in predicting MoRFs in disordered protein sequences.
  相似文献   

13.
All proteomes contain both proteins and polypeptide segments that don’t form a defined three-dimensional structure yet are biologically active—called intrinsically disordered proteins and regions (IDPs and IDRs). Most of these IDPs/IDRs lack useful functional annotation limiting our understanding of their importance for organism fitness. Here we characterized IDRs using protein sequence annotations of functional sites and regions available in the UniProt knowledgebase (“UniProt features”: active site, ligand-binding pocket, regions mediating protein-protein interactions, etc.). By measuring the statistical enrichment of twenty-five UniProt features in 981 IDRs of 561 human proteins, we identified eight features that are commonly located in IDRs. We then collected the genetic variant data from the general population and patient-based databases and evaluated the prevalence of population and pathogenic variations in IDPs/IDRs. We observed that some IDRs tolerate 2 to 12-times more single amino acid-substituting missense mutations than synonymous changes in the general population. However, we also found that 37% of all germline pathogenic mutations are located in disordered regions of 96 proteins. Based on the observed-to-expected frequency of mutations, we categorized 34 IDRs in 20 proteins (DDX3X, KIT, RB1, etc.) as intolerant to mutation. Finally, using statistical analysis and a machine learning approach, we demonstrate that mutation-intolerant IDRs carry a distinct signature of functional features. Our study presents a novel approach to assign functional importance to IDRs by leveraging the wealth of available genetic data, which will aid in a deeper understating of the role of IDRs in biological processes and disease mechanisms.  相似文献   

14.

Background

Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating many protein–protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation, suggesting an active role for the neighbouring amino acids.

Results

The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences where one is missing the linear motif. Furthermore, those instances have a higher chance to co–evolve with the neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation of the linear motif–mediated interaction has been shown to depend on the modifications (e.g. phosphorylation) at neighbouring positions or is thought to benefit from the binding versatility of disordered regions.

Conclusion

The results suggest that flanking regions are relevant for linear motif–mediated interactions, both at the structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the understanding of the role of these predicted instances in determining the protein function inside the broader context of the cellular network where they arise.  相似文献   

15.

Background

How protein phosphorylation relates to kingdom/phylum divergence is largely unknown and the amino acid residues surrounding the phosphorylation site have profound importance on protein kinase–substrate interactions. Standard motif analysis is not adequate for large scale comparative analysis because each phophopeptide is assigned to a unique motif and perform poorly with the unbalanced nature of the input datasets.

Results

First the discriminative n-grams of five species from five different kingdom/phyla were identified. A signature with 5540 discriminative n-grams that could be found in other species from the same kingdoms/phyla was created. Using a test data set, the ability of the signature to classify species in their corresponding kingdom/phylum was confirmed using classification methods. Lastly, ortholog proteins among proteins with n-grams were identified in order to determine to what degree was the identity of the detected n-grams a property of phosphosites rather than a consequence of species-specific or kingdom/phylum-specific protein inventory. The motifs were grouped in clusters of equal physico-chemical nature and their distribution was similar between species in the same kingdom/phylum while clear differences were found among species of different kingdom/phylum. For example, the animal-specific top discriminative n-grams contained many basic amino acids and the plant-specific motifs were mainly acidic. Secondary structure prediction methods show that the discriminative n-grams in the majority of the cases lack from a regular secondary structure as on average they had 88 % of random coil compared to 66 % found in the phosphoproteins they were derived from.

Conclusions

The discriminative n-grams were able to classify organisms in their corresponding kingdom/phylum, they show different patterns among species of different kingdom/phylum and these regions can contribute to evolutionary divergence as they are in disordered regions that can evolve rapidly. The differences found possibly reflect group-specific differences in the kinomes of the different groups of species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0657-2) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Intrinsically disordered proteins (IDPs) constitute a broad set of proteins with few uniting and many diverging properties. IDPs—and intrinsically disordered regions (IDRs) interspersed between folded domains—are generally characterized as having no persistent tertiary structure; instead they interconvert between a large number of different and often expanded structures. IDPs and IDRs are involved in an enormously wide range of biological functions and reveal novel mechanisms of interactions, and while they defy the common structure-function paradigm of folded proteins, their structural preferences and dynamics are important for their function. We here discuss open questions in the field of IDPs and IDRs, focusing on areas where machine learning and other computational methods play a role. We discuss computational methods aimed to predict transiently formed local and long-range structure, including methods for integrative structural biology. We discuss the many different ways in which IDPs and IDRs can bind to other molecules, both via short linear motifs, as well as in the formation of larger dynamic complexes such as biomolecular condensates. We discuss how experiments are providing insight into such complexes and may enable more accurate predictions. Finally, we discuss the role of IDPs in disease and how new methods are needed to interpret the mechanistic effects of genomic variants in IDPs.  相似文献   

18.
Intrinsically disordered proteins and regions (IDPs and IDRs) lack stable 3D structure under physiological conditions in-vitro, are common in eukaryotes, and facilitate interactions with RNA, DNA and proteins. Current methods for prediction of IDPs and IDRs do not provide insights into their functions, except for a handful of methods that address predictions of protein-binding regions. We report first-of-its-kind computational method DisoRDPbind for high-throughput prediction of RNA, DNA and protein binding residues located in IDRs from protein sequences. DisoRDPbind is implemented using a runtime-efficient multi-layered design that utilizes information extracted from physiochemical properties of amino acids, sequence complexity, putative secondary structure and disorder and sequence alignment. Empirical tests demonstrate that it provides accurate predictions that are competitive with other predictors of disorder-mediated protein binding regions and complementary to the methods that predict RNA- and DNA-binding residues annotated based on crystal structures. Application in Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila melanogaster proteomes reveals that RNA- and DNA-binding proteins predicted by DisoRDPbind complement and overlap with the corresponding known binding proteins collected from several sources. Also, the number of the putative protein-binding regions predicted with DisoRDPbind correlates with the promiscuity of proteins in the corresponding protein–protein interaction networks. Webserver: http://biomine.ece.ualberta.ca/DisoRDPbind/  相似文献   

19.
《Journal of molecular biology》2019,431(8):1650-1670
Intrinsically disordered proteins (IDPs) or regions (IDRs) perform diverse cellular functions, but are also prone to forming promiscuous and potentially deleterious interactions. We investigate the extent to which the properties of, and content in, IDRs have adapted to enable functional diversity while limiting interference from promiscuous interactions in the crowded cellular environment. Information on protein sequences, their predicted intrinsic disorder, and 3D structure contents is related to data on protein cellular concentrations, gene co-expression, and protein–protein interactions in the well-studied yeast Saccharomyces cerevisiae. Results reveal that both the protein IDR content and the frequency of “sticky” amino acids in IDRs (those more frequently involved in protein interfaces) decrease with increasing protein cellular concentration. This implies that the IDR content and the amino acid composition of IDRs experience negative selection as the protein concentration increases. In the S. cerevisiae protein–protein interaction network, the higher a protein's IDR content, the more frequently it interacts with IDR-containing partners, and the more functionally diverse the partners are. Employing a clustering analysis of Gene Ontology terms, we newly identify ~ 600 putative multifunctional proteins in S. cerevisiae. Strikingly, these proteins are enriched in IDRs and contribute significantly to all the observed trends. In particular, IDRs of multi-functional proteins feature more sticky amino acids than IDRs of their non-multifunctional counterparts, or the surfaces of structured yeast proteins. This property likely affords sufficient binding affinity for the functional interactions, commonly mediated by short IDR segments, thereby counterbalancing the loss in overall IDR conformational entropy upon binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号