首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A healthy human body contains at least tenfold more bacterial cells than human cells and the most abundant and diverse microbial community resides in the intestinal tract. Intestinal health is not only maintained by the human intestine itself and by dietary factors, but is also largely supported by this resident microbial community. Conversely, however, a large body of evidence supports a relationship between bacteria, bacterial activities and human colorectal cancer. Symbiosis in this multifaceted organ is thus crucial to maintain a healthy balance within the host-diet-microbiota triangle and accordingly, changes in any of these three factors may drive a healthy situation into a state of disease. In this review, the factors that sustain health or drive this complex intestinal system into dysbiosis are discussed. Emphasis is on the role of the intestinal microbiota and related mechanisms that can drive the initiation and progression of sporadic colorectal cancer (CRC). These mechanisms comprise the induction of pro-inflammatory and pro-carcinogenic pathways in epithelial cells as well as the production of (geno)toxins and the conversion of pro-carcinogenic dietary factors into carcinogens. A thorough understanding of these processes will provide leads for future research and may ultimately aid in development of new strategies for CRC diagnosis and prevention.  相似文献   

2.
Chen W  Liu F  Ling Z  Tong X  Xiang C 《PloS one》2012,7(6):e39743
Recent reports have suggested the involvement of gut microbiota in the progression of colorectal cancer (CRC). We utilized pyrosequencing based analysis of 16S rRNA genes to determine the overall structure of microbiota in patients with colorectal cancer and healthy controls; we investigated microbiota of the intestinal lumen, the cancerous tissue and matched noncancerous normal tissue. Moreover, we investigated the mucosa-adherent microbial composition using rectal swab samples because the structure of the tissue-adherent bacterial community is potentially altered following bowel cleansing. Our findings indicated that the microbial structure of the intestinal lumen and cancerous tissue differed significantly. Phylotypes that enhance energy harvest from diets or perform metabolic exchange with the host were more abundant in the lumen. There were more abundant Firmicutes and less abundant Bacteroidetes and Proteobacteria in lumen. The overall microbial structures of cancerous tissue and noncancerous tissue were similar; however the tumor microbiota exhibited lower diversity. The structures of the intestinal lumen microbiota and mucosa-adherent microbiota were different in CRC patients compared to matched microbiota in healthy individuals. Lactobacillales was enriched in cancerous tissue, whereas Faecalibacterium was reduced. In the mucosa-adherent microbiota, Bifidobacterium, Faecalibacterium, and Blautia were reduced in CRC patients, whereas Fusobacterium, Porphyromonas, Peptostreptococcus, and Mogibacterium were enriched. In the lumen, predominant phylotypes related to metabolic disorders or metabolic exchange with the host, Erysipelotrichaceae, Prevotellaceae, and Coriobacteriaceae were increased in cancer patients. Coupled with previous reports, these results suggest that the intestinal microbiota is associated with CRC risk and that intestinal lumen microflora potentially influence CRC risk via cometabolism or metabolic exchange with the host. However, mucosa-associated microbiota potentially affects CRC risk primarily through direct interaction with the host.  相似文献   

3.
肠道微生物群落与结直肠癌(Colorectal Cancer,CRC)有着十分密切的关系。肠道微生物的群落变化可能会伴随着CRC的发生,而一些有害菌的出现可能是导致CRC的直接原因。其中,具核梭杆菌(Fusobacterium nucleatum)、产肠毒素脆弱拟杆菌(Enterotoxigenic Bacteroides fragilis,ETBF)和pks阳性大肠杆菌(pks+Escherichiacoli)与CRC的发生最密切。本综述着重介绍了pks+E.coli及Colibactin的致病原因、对肠道微生物组成的影响、Colibactin的合成及怎样抑制或促进pks+E. coli。同时也对ETBF和F. nucleatum可能的致癌原因、对肠道微生物组成的影响及对二者的促进或抑制做出了介绍。  相似文献   

4.
An intricate relationship exists and interactions occur between gut microbiota and colorectal cancer(CRC). Radical surgery combined with adjuvant chemotherapy(AC) serves as the mainstream therapeutic scheme for most CRC patients. The current research was conducted to assess the effect of surgery or chemotherapy on gut microbiota. Forty-three CRC patients who received radical surgery and AC were enrolled. Fecal samples were collected preoperatively, postoperatively, and after the first to fifth cycles of postoperative chemotherapy. The microbial community of each sample was analyzed using high throughput 16S rRNA amplicon sequencing. Compared with preoperative samples, fecal samples collected postoperatively exhibited a significant decrease of obligate anaerobes, tumor-related bacteria, and butyric acid-producing bacteria. However, a significant increase of some conditional pathogens was observed. In addition, the AC regimen(CapeOx) was found to alter intestinal microbiota dramatically. In particular, several changes were observed after chemotherapy including an increase of pathogenic bacteria, the "rebound effect" of chemotherapy-adapted bacteria, the shift of lactate-utilizing microbiota from Veillonella to Butyricimonas and Butyricicoccus, as well as the decrease of probiotics. Both radical surgery and CapeOx chemotherapy exert a non-negligible effect on the gut microbiota of CRC patients. Microbiota-based intervention may be beneficial for patients during postoperative clinical management.  相似文献   

5.
BackgroundTrace elements have important influence on body function primarily because of the vital role they have in many physiological processes. Their alterations have been found in many disorders, including cancer. It has been well known for decades that disturbances in elemental concentration may lead to cell damaging, DNA injuries and imbalance in oxidative burden. Our study tried to determine the difference of trace elements concentrations between colorectal adenocarcinoma and adjacent healthy intestinal tissue.Methods59 subjects participated in this study. Healthy colon mucosa samples and colon tumor tissue samples were obtained from patients previously diagnosed with colon carcinoma by standard diagnostic procedures. Analysis of the elements was performed by inductively coupled plasma mass spectrometry (ICP-MS).ResultsThe results showed that Na, K, Mg, Ca, Cu, Zn, Se, Mn, Cd, Cr and Hg significantly differ between malignant tissue of colorectal cancer (CRC) and adjacent healthy bowel tissue. We have, also, found that Cu/Zn tissue ratio was significantly higher in CRC compared to a healthy tissue and that patients with higher CRC stages had also significantly higher ratio.ConclusionsSince this is the first such study in Balkan region, we assume that results of our study could be a good indicator of elemental alterations in colorectal cancer of Balkan population, due to similarity in lifestyle, dietary intake, pollution and exposure to toxic elements.  相似文献   

6.
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality in the United States. As such, it assumes a significant role in both health policy decision-making and scientific research. CRC has been a model for investigating the molecular genetics of cancer development and progression; this is in part due to the easily detectable, sequential transition of cells from normal colonic epithelium to adenoma and then to adenocarcinoma. In addition, familial syndromes that predispose to CRC, such as familial adenomatous polyposis (FAP) and hereditary nonpolyposis colorectal cancer (HNPCC), have significantly contributed to our understanding of the genetic mechanisms underlying CRC formation. It is now well recognized that hereditary CRC syndromes are due to germline mutations of genes that function as tumor suppressors or, less frequently, oncogenes. Accumulation of subsequent mutations in other genes with related functions results in the stepwise progression to carcinoma. It is important to note that somatic changes in similar genes are involved in the formation of sporadic CRC. The identification of these important CRC-related genes may help facilitate the early diagnosis, prevention, and treatment of CRC. This article reviews the various familial CRC syndromes along with their genetic etiology, as well as discusses the principle of genetic testing for these conditions.  相似文献   

7.
Animal models of inflammatory bowel disease (IBD) and colorectal cancer (CRC) have provided significant insight into the cell intrinsic and extrinsic mechanisms that contribute to the onset and progression of intestinal diseases. The identification of new molecules that promote these pathologies has led to a flurry of activity focused on the development of potential new therapies to inhibit their function. As a result, various pre-clinical mouse models with an intact immune system and stromal microenvironment are now heavily used. Here we describe three experimental protocols to test the efficacy of new therapeutics in pre-clinical models of (1) acute mucosal damage, (2) chronic colitis and/or colitis-associated colon cancer, and (3) sporadic colorectal cancer. We also outline procedures for serial endoscopic examination that can be used to document the therapeutic response of an individual tumor and to monitor the health of individual mice. These protocols provide complementary experimental platforms to test the effectiveness of therapeutic compounds shown to be well tolerated by mice.  相似文献   

8.
The glycoconjugates expressed by cancer cells frequently contain sialylated oligosaccharide chains. Among these oligosaccharides the sialyl Lewis a (sLe(a)) and sialyl Lewis x (sLe(x)) antigens are found to be overexpressed in tumours of different origin. The current study assesses sLe(a) and sLe(x) expression in different colorectal specimens in order to establish the correlation of these biomarkers with both malignant transformation of colorectal mucosa and the progression of colorectal cancer (CRC). Healthy disease-free and inflammatory mucosa specimens showed no presence of the antigens. sLe(a) was expressed in 6.7% of the healthy tissue from CRC patients, in 20.8% of the adenomas, and in 33.3% and 42.6% of the transitional tissue and tumour tissue, respectively. sLe(x) expression was observed in 6.7% of the healthy tissue from CRC patients, in 27.0% of the adenomas, and in 25.6% and 74.8% of the transitional and the tumour tissue, respectively. The expression of the sLe(a) and sLe(x) antigens was correlated in adenomas, as well as in healthy and tumour tissue from CRC. Moreover, the high expression of sLe(x) in adenomas was correlated with a high degree of dysplasia (p=0.042). Finally, the survival analysis suggested that sLe(a) expression may be a prognostic factor for predicting disease-free survival in colorectal cancer (p=0.012).  相似文献   

9.
Solid tumors are characterized by global metabolic alterations which contribute to their growth and progression. Altered gene expression profiles and plasma lipid composition suggested a role for metabolic reprogramming in colorectal cancer (CRC) development. However, a conclusive picture of CRC-associated lipidome alterations in the tumor tissue has not emerged. Here, we determined molar abundances of 342 species from 20 lipid classes in matched biopsies of CRC and adjacent normal mucosa. We demonstrate that in contrast to previous reports, CRC shows a largely preserved lipidome composition that resembles that of normal colonic mucosa. Important exceptions include increased levels of lyso-phosphatidylinositols in CRC and reduced abundance of ether phospholipids in advanced stages of CRC. As such, our observations challenge the concept of widespread alterations in lipid metabolism in CRC and rather suggest changes in the cellular lipid profile that are limited to selected lipids involved in signaling and the scavenging of reactive oxygen species.  相似文献   

10.
A number of investigations, mainly using in vitro and animal models, have demonstrated a wide range of possible mechanisms, by which probiotics may play a role in colorectal cancer (CRC) prevention. In this context, the most well studied probiotics are certain strains from the genera of lactobacilli and bifidobacteria. The reported anti-CRC mechanisms of probiotics encompass intraluminal, systemic, and direct effects on intestinal mucosa. Intraluminal effects detailed in this review include competitive exclusion of pathogenic intestinal flora, alteration of intestinal microflora enzyme activity, reduction of carcinogenic secondary bile acids, binding of carcinogens and mutagens, and increasing short chain fatty acids production. Reduction of DNA damage and suppression of aberrant crypt foci formation have been well demonstrated as direct anti-CRC effects of probiotics on intestinal mucosa. Existing evidence clearly support a multifaceted immunomodulatory role of probiotics in CRC, particularly its ability to modulate intestinal inflammation, a well known risk factor for CRC. The effectiveness of probiotics in CRC prevention is dependent on the strain of the microorganism, while viability may not be a prerequisite for certain probiotic anticancer mechanisms, as indicated by several studies. Emerging data suggest synbiotic as a more effective approach than either prebiotics or probiotics alone. More in vivo especially human studies are warranted to further elucidate and confirm the potential role of probiotics (viable and non-viable), prebiotics and synbiotics in CRC chemoprevention.  相似文献   

11.
In this study we used stool profiling to identify intestinal bacteria and metabolites that are differentially represented in humans with colorectal cancer (CRC) compared to healthy controls to identify how microbial functions may influence CRC development. Stool samples were collected from healthy adults (n = 10) and colorectal cancer patients (n = 11) prior to colon resection surgery at the University of Colorado Health-Poudre Valley Hospital in Fort Collins, CO. The V4 region of the 16s rRNA gene was pyrosequenced and both short chain fatty acids and global stool metabolites were extracted and analyzed utilizing Gas Chromatography-Mass Spectrometry (GC-MS). There were no significant differences in the overall microbial community structure associated with the disease state, but several bacterial genera, particularly butyrate-producing species, were under-represented in the CRC samples, while a mucin-degrading species, Akkermansia muciniphila, was about 4-fold higher in CRC (p<0.01). Proportionately higher amounts of butyrate were seen in stool of healthy individuals while relative concentrations of acetate were higher in stools of CRC patients. GC-MS profiling revealed higher concentrations of amino acids in stool samples from CRC patients and higher poly and monounsaturated fatty acids and ursodeoxycholic acid, a conjugated bile acid in stool samples from healthy adults (p<0.01). Correlative analysis between the combined datasets revealed some potential relationships between stool metabolites and certain bacterial species. These associations could provide insight into microbial functions occurring in a cancer environment and will help direct future mechanistic studies. Using integrated “omics” approaches may prove a useful tool in identifying functional groups of gastrointestinal bacteria and their associated metabolites as novel therapeutic and chemopreventive targets.  相似文献   

12.
Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies.KEY WORDS: Adherent-invasive E. coli, Dysbiosis, IBD, CRC, Colibactin  相似文献   

13.
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is important mediator of angiogenesis, and its expression in colorectal tumors is related to tumor progression. VEGF expression has been detected in normal mucosa, primary colon cancers, and metastatic tumors, and patients with low VEGF expression have a better survival rate. In addition, anti-VEGF monoclonal antibody improves overall survival when used in combination with existing metastatic colorectal cancer therapy. Therefore, prediction of VEGF production based on individual genetic background might be important for predicting the course of the disease and the efficacy of anticancer treatment. The number of studies evaluating the influence of VEGF polymorphisms on cancer susceptibility is growing; however, their results are often conflicting. In addition, these studies are rarely accompanied with the expression analysis examining the influence of these polymorphisms on mRNA expression in tumor tissue. In this study, we have examined the influence of VEGF polymorphisms -1154 G/A and -460 C/T on VEGF mRNA expression and susceptibility to sporadic colon cancer by real-time PCR-SNP and mRNA expression analysis. The study included population control group consisting of 160 unrelated volunteers and a group of 160 patients with sporadic colon cancer. According to our results, -1154 G/A and -460 C/T do not influence VEGF mRNA expression in colorectal tumors and susceptibility to sporadic colon cancer, although the role of other polymorphisms cannot be excluded.  相似文献   

15.
Pei H  Zhu H  Zeng S  Li Y  Yang H  Shen L  Chen J  Zeng L  Fan J  Li X  Gong Y  Shen H 《Journal of proteome research》2007,6(7):2495-2501
BACKGROUND: Understanding the proteins associated with lymph node metastasis (LNM) in colorectal cancer (CRC) will benefit us in the prediction of CRC prognosis and provide us new potential targets in the intervention of CRC. The aim of this study is to investigate the LNM-associated proteins and to evaluate the clinicopathological characteristics of these target proteins' expression in CRC. METHODS: Fresh tumor and paired normal mucosa from five cases for each group of non-LNM CRC and LNM CRC were analyzed by two-dimensional electrophoresis coupled with MALDI-TOF-MS, followed by Western blotting confirmation. In 40 paraffin-embedded CRC samples, each for non-LNM CRC and LNM CRC, four differentially expressed proteins identified by proteomics analysis were detected by tissue microarray with immunohistochemistry staining to access the clinicopathological characteristics of these proteins in LNM of CRC. RESULTS: Twenty-five proteins were found to be differentially expressed between normal mucosa and CRC tissue. Increased expression levels of heat shock protein-27 (HSP-27), glutathione S-transferase (GST), and Annexin II, but a decreased expression level of liver-fatty acid binding protein (L-FABP), existed in LNM CRC as compared with non-LNM CRC (p<0.01 or p<0.05, respectively). CONCLUSION: The techniques of proteomic analysis combined with tissue microarray provide us a dramatic tool for screening of LNM-associated proteins in cancer research. The increased expression of HSP-27, GST, and Annexin II, but decreased expression of L-FABP, suggests a significantly elevated incidence of LNM in CRC.  相似文献   

16.
The potential role for commensal bacteria in colorectal carcinogenesis is explored in this review. Most colorectal cancers (CRCs) occur sporadically and arise from the gradual accumulation of mutations in genes regulating cell growth and DNA repair. Genetic mutations followed by clonal selection result in the transformation of normal cells into malignant derivatives. Numerous toxicological effects of colonic bacteria have been reported. However, those recognized as damaging epithelial cell DNA are most easily reconciled with the currently understood genetic basis for sporadic CRC. Thus, we focus on mechanisms by which particular commensal bacteria may convert dietary procarcinogens into DNA damaging agents (e.g., ethanol and heterocyclic amines) or directly generate carcinogens (e.g., fecapentaenes). Although these and other metabolic activities have yet to be linked directly to sporadic CRC, several lines of investigation are reviewed to highlight difficulties and progress in the area. Particular focus is given to commensal bacteria that alter the epithelial redox environment, such as production of oxygen radicals by Enterococcus faecalis or production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Super-oxide-producing E. faecalis has conclusively been shown to cause colonic epithelial cell DNA damage. Though SRB-derived hydrogen sulfide (H(2)S) has not been reported thus far to induce DNA damage or function as a carcinogen, recent data demonstrate that this reductant activates molecular pathways implicated in CRC. These observations combined with evidence that SRB carriage may be genetically encoded evoke a working model that incorporates multifactorial gene-environment interactions that appear to underlie the development of sporadic CRC.  相似文献   

17.
18.
19.
Over the last few decades it has been established that the complex interaction between the host and the multitude of organisms that compose the intestinal microbiota plays an important role in human metabolic health and disease. Whilst there is no defined consensus on the composition of a healthy microbiome due to confounding factors such as ethnicity, geographical locations, age and sex, there are undoubtably populations of microbes that are consistently dysregulated in gut diseases including colorectal cancer (CRC). In this review, we discuss the most recent advances in the application of the gut microbiota, not just bacteria, and derived microbial compounds in the diagnosis of CRC and the potential to exploit microbes as novel agents in the management and treatment of CRC. We highlight examples of the microbiota, and their derivatives, that have the potential to become standalone diagnostic tools or be used in combination with current screening techniques to improve sensitivity and specificity for earlier CRC diagnoses and provide a perspective on their potential as biotherapeutics with translatability to clinical trials.  相似文献   

20.
The centrosome-associated kinase aurora A (AURKA) is involved in genetic instability and is over-expressed in several human carcinomas including colorectal cancer (CRC). The choromosome locus of AURKA, 20q13, is frequently amplified in CRC, and the functional impact of such regions needs to be extensively investigated in large amount of clinical samples. Case-matched tissues of colorectal adenocarcinomas and adjacent normal epithelium (n= 134) were included in this study. Quantitative PCR was carried out to examine the copy number and mRNA level of AURKA in CRC. Our results showed that copy number gains of AUKRA were detected in a relative high percentage of CRC samples (32.4%, 43 of 134). There was a positive correlation between copy number increase of AURKA and tumor progression. And copy number gains of AURKA also showed a positive correlation with mRNA over-expression in CRC. However, the expression level of AURKA mRNA was also enhanced in the group of CRC samples with unaltered copy numbers. These findings indicated that sporadic colorectal cancers exhibit different mechanisms of aurora A regulation and this may impact the efficacy of aurora-targeted therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号