首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee HS 《Bioresource technology》2006,97(12):1372-1376
The antiplatelet activities of Curcuma longa L. rhizome-derived materials were measured using a platelet aggregometer and compared with those of aspirin as antiplatelet agent. The active constituent from the rhizome of Curcuma longa L. was isolated and characterized as ar-turmerone by various spectral analyses. At 50% inhibitory concentration (IC50) value, ar-turmerone was effective in inhibiting platelet aggregation induced by collagen (IC50, 14.4 microM) and arachidonic acid (IC50, 43.6 microM). However, ar-turmerone had no effect on platelet activating factor or thrombin induced platelet aggregation. In comparison, ar-turmerone was significantly more potent platelet inhibitor than aspirin against platelet aggregation induced by collagen. These results suggested that ar-turmerone could be useful as a lead compound for inhibiting platelet aggregation induced by collagen and arachidonic acid.  相似文献   

2.
A protein that blocks collagen-stimulated platelet aggregation has been identified and isolated from the soluble fraction of salivary glands from Haementeria officinalis leeches. We have named this protein leech antiplatelet protein (LAPP). LAPP was isolated from soluble crude salivary gland extract by heparin-agarose, size exclusion, and C18 reverse phase high-performance chromatography. Its molecular weight is approximately 16,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reduced and nonreduced conditions. The sequences of peptides generated by V8 digestion of LAPP as well as its amino acid composition suggested no homology to other known proteins. The IC50 for LAPP to inhibit platelet aggregation was approximately 60 nM. This inhibitory activity is specific for collagen-induced aggregation. Platelet aggregation in response to ADP, arachidonic acid, U46619, thrombin, and ionophore A23187 was not inhibited by LAPP at a concentration that blocked platelet aggregation to collagen by 100%. In contrast, crude salivary gland-soluble extract contained activity(ies) which inhibited aggregation to all these agonists except thrombin at 1 unit/ml and 2 microM A23187. Thus, the H. officinalis leech has evolved multiple mechanisms to prevent hemostasis, including an inhibitor of collagen-stimulated platelet aggregation. The identification and isolation of LAPP demonstrates the existence of a new type of platelet inhibitor that should be useful to better understand the mechanism of collagen stimulation of platelets.  相似文献   

3.
The inhibitory effects of three pure compounds isolated from wood garlic, 2,4,5-trithiahexane (I), 2,4,5,7-tetrathiaoctane (II), and 2,4,5,7-tetrathiaoctane 2,2-dioxide (III), on rabbit platelet aggregation induced by collagen, arachidonic acid, U46619, ADP (adenosine 5'-diphosphate), PAF (platelet aggregating factor), and thrombin were studied in vitro. The anti-aggregating activity of 2,4,5,7-tetrathiaoctane 4,4-dioxide (IV) was also measured with collagen and arachidonic acid. I, II, III, and IV inhibited the platelet aggregation induced by all tested agonists. I, II, and III exhibited a stronger inhibitory effect against the thrombin-induced aggregation of GFP (gel-filtered platelets) than against the aggregation induced by the other agonists. Notably, the IC50 value for III was 4 microM, which is approximately 2.5 times stronger than MATS (methyl allyl trisulfide), a major anti-platelet compound isolated from garlic. In inhibiting collagen-induced aggregation, II was as potent as MATS and aspirin, with a marked disaggregation effect on the secondary aggregation by arachidonic acid, at the rate of 47.05%/min at a concentration of 10(-4) M. I, II, and III also suppressed U46619-induced aggregation. These results suggest that sulfur-containing compounds in wood garlic not only inhibit arachidonic acid metabolism but also suppress aggregation in association with the function of the platelet plasma membrane.  相似文献   

4.
In an effort to develop potent antiplatelet agents, a series of trihydroxychalcones was synthesized and screened in vitro for their inhibitory effects on washed rabbit platelet aggregation induced by arachidonic acid (100 microM) and collagen (10 microg/ml). Of five compounds with potent inhibitory effects on arachidonic acid- and collagen-induced platelet aggregation, compound 4e was found to be the most potent. The structure-activity relationships suggested that antiplatelet activity was governed to a greater extent by the substituent on B ring of the chalcone template, and most of the active compounds had methoxy or dimethoxy groups on B ring.  相似文献   

5.
Nitric oxide and platelet energy metabolism   总被引:3,自引:0,他引:3  
This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 microM) and sodium nitroprusside, SNP, (5-100 microM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 microM and from 9 to 75 microM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 microM) and by SNP (IC50 = 100 microM). SNAP (20-100 microM), SNP (10-200 microM) and collagen (20 microg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 microM) and SNP (50-200 microM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 microM) and SNP (10-300 microM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production.  相似文献   

6.
Antiplatelet actions of aqueous extract of onion were investigated in rat and human platelet. IC(50)values of onion extract for collagen-, thrombin-, arachidonic acid (AA)-induced aggregations and collagen-induced thromboxane A(2)(TXA(2)) formation were 0.17 +/- 0. 01, 0.23 + 0.03, 0.34 +/- 0.02 and 0.12 +/- 0.01 g/ml, respectively. [(3)H]-AA release induced by collagen (10 microg/ml) in rat platelet was decreased by onion compared to control (22.1 +/- 2.13 and 5.2 +/- 0.82% of total [(3)H]-AA incorporated, respectively). In fura-2 loaded platelets, the elevation of intracellular Ca(2+)concentration stimulated by collagen was inhibited by onion. Onion had no cytotoxic effect in platelet. Onion significantly inhibited TXA(2)synthase activity without influence on COX activity. Platelet aggregation induced by U46619, a stable TXA(2)mimetic, was inhibited by onion, indicating its antagonism for TXA(2)/PGH(2)receptor. These results suggest that the mechanism for antiplatelet effect of onion may, at least partly, involve AA release diminution, TXA(2)synthase inhibition and TXA(2)/PGH(2)receptor blockade.  相似文献   

7.
As widely assumed, platelets and coagulation system heavily influence the pathogenesis and progression of cardiovascular diseases. Some 1,4-naphthoquinone derivatives, such as vitamin K3, have been reported to increase the synthesis of coagulation proteins. In this study, we examine how 2-p-mercaptophenyl -1,4-naphthoquinone (NTP), a newly synthesized 1,4-naphthoquinone derivative, affects the platelet function in humans. A tapered parallel plate chamber which provided a range of shear stress covering the entire physiological range in human circulation is used to assess platelet adhesiveness on fibrinogen coated-surface. In addition, platelet aggregation and thromboxane B2 (TXB2) production by inducers are evaluated by the turbidimetric method and enzyme immunoassay kit, respectively. Moreover, platelets [Ca2+]i are measured using a dual-wavelength fluorescence spectrophotometer. Analysis results indicate that 1) NTP decreases the percentages of attached platelets at the locations in various shear stresses and the levels of platelet adhesiveness, denoted as the slope; 2) NTP can inhibit the platelet aggregation by ADP (2 microM) and collagen (25 microg/ml), and the IC50 are: 0.32 and 26.83 microg/ml, respectively; and 3) NTP markedly inhibits TXB2 formation and platelet [Ca2+]i elevation caused by ADP and collagen. Therefore, we conclude that NTP may inhibit platelet adhesiveness on fibrinogen coated-surface, aggregability, [Ca2+]i, and thromboxane production, and that it may be used as an antiplatelet agent.  相似文献   

8.
Peroxynitrite (ONOO-) strongly inhibits agonist-induced platelet responses. However, the mechanisms involved are not completely defined. Using porcine platelets, we tested the hypothesis that ONOO- reduces platelet aggregation and dense granule secretion by inhibiting energy production. It was found that ONOO- (25-300 microM) inhibited collagen-induced dense granule secretion (IC50 = 55 +/- 7 microM) more strongly than aggregation (IC(50) = 124 +/- 16 microM). The antiaggregatory and antisecretory effects of ONOO- were only slightly (5-10%) reduced by 1H-[1,2,4]-oxadiazolo-[4,3-alpha]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. In resting platelets ONOO- (50-300 microM) enhanced glycolysis rate and reduced oxygen consumption, in a dose dependent manner. The ONOO- effects on glycolysis rate and oxygen consumption were not abolished by ODQ. The extent of glycolysis stimulation exerted by ONOO- was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or an uncoupler (2,4-dinitrophenol). Stimulation of platelets by collagen was associated with a rise in mitochondrial oxygen consumption, accelerated lactate production, and unchanged intracellular ATP content. In contrast to resting cells, in collagen-stimulated platelets, ONOO- (200 microM) distinctly decreased the cellular ATP content. The glycolytic activity and oxygen consumption of resting platelets were not affected by 8-bromoguanosine 3',5'-cyclic monophosphate. Blocking of the mitochondrial ATP production by antimycin A slightly reduced collagen-induced aggregation and strongly inhibited dense granule secretion. Treatment of platelets with ONOO- (50-300 microM) resulted in decreased activities of NADH : ubiquinone oxidoreductase, succinate dehydrogenase and cytochrome oxidase. It is concluded that the inhibitory effect of ONOO- on platelet secretion and to a lesser extent on aggregation may be mediated, at least in part, by the reduction of mitochondrial energy production.  相似文献   

9.
The effect of mepacrine (DL-quinacrine-HCI), a specific inhibitor of phospholipase C, on cyclic-GMP levels in human platelets was investigated. The concentrations of mepacrine producing 50% inhibition of human platelet aggregation induced by 5 microM ADP and 3 micrograms/ml of collagen were 50 +/- 8 and 70 +/- 15 microM, respectively. Addition of mepacrine to human platelet suspension resulted in increases in cyclic GMP. In contrast to cyclic-GMP levels, cyclic-AMP content was not affected by mepacrine. Mepacrine did not stimulate guanylate cyclase, but did specifically inhibit human platelet cyclic-GMP phosphodiesterase, separated from cyclic-AMP phosphodiesterase or other forms of phosphodiesterase on DEAE-cellulose columns. Stimulation by cyclic GMP of human platelet cyclic-GMP-stimulated cyclic-AMP phosphodiesterase activity was not inhibited by mepacrine. The IC50 value of the drug for cyclic-GMP phosphodiesterase was 40 microM, and IC50 for cyclic-AMP phosphodiesterase was 1.2 mM. Mepacrine was 30-times more potent as an inhibitor of human platelet cyclic GMP than of cyclic-AMP phosphodiesterase. Mepacrine blocks arachidonate release from human platelets by inhibiting phosphatidylinositol-specific phospholipase C. The increase in cyclic-GMP levels produced by addition of mepacrine will explain part of the pharmacological action of this drug.  相似文献   

10.
Platelet-derived growth factor (PDGF) is known to inhibit collagen-induced platelet aggregation. Collagen-induced binding of 125I-PDGF to human washed platelets was therefore investigated. It was found 1) to be time-dependent, reaching a plateau at 20 degrees C after 30 min, 2) collagen concentration-dependent, 3) specifically inhibited by unlabeled PDGF, and 4) saturable. Scatchard plot analysis showed a single class of sites with 3000 +/- 450 molecules bound/cell and an apparent KD of 1.2 +/- 0.2 10(-8) M. The effects of PDGF on collagen-induced phosphoinositide breakdown and protein phosphorylation were also investigated. At 50 ng/ml PDGF, a concentration which completely inhibited collagen-induced aggregation, the breakdown of [32P]phosphatidylinositol 4,5-biphosphate (PIP2) and [32P]phosphatidylinositol 4-phosphate (PIP) was observed, but the subsequent replenishment of [32P]PIP2 was inhibited. The same PDGF concentration totally inhibited collagen-induced phosphatidic acid formation. PDGF also completely prevented phosphorylation of P43 and P20, as a result of protein kinase C activation consecutive to phosphoinositide metabolism. These results suggest that (i) a specific PDGF receptor can be induced by collagen, and (ii) PDGF can effect the early events of collagen-induced platelet activation by inhibiting PIP2 resynthesis and P43 and P20 phosphorylation. It is concluded that PDGF might be involved in a negative feed-back control of platelet activation.  相似文献   

11.
Pannexin1 (Panx1), a membrane channel-forming protein permitting the passage of small-sized molecules, such as ATP, is expressed in human platelets. Recently, we showed that inhibiting Panx1 affects collagen-induced platelet aggregation but not aggregation triggered by other agonists. We also found that a single nucleotide polymorphism (SNP; rs1138800) in the Panx1 gene encoded for a gain-of-function channel (Panx1-400C) and was associated with enhanced collagen-induced platelet reactivity. Here, we assessed the association of this SNP with platelet reactivity in a cohort of 758 stable cardiovascular patients from the ADRIE study treated with aspirin and/or clopidogrel. We found that presence of the Panx1-400C allele was not associated with platelet reactivity in stable cardiovascular patients, irrespective of the platelet aggregation agonist used (collagen, ADP or arachidonic acid) or the anti-platelet drug regimen. Moreover, the Panx1-400A?>?C SNP did also not affect the re-occurrence of cardiac ischemic events in the same stable cardiovascular patient cohort.  相似文献   

12.
1. Variations in the concentration of Ca2+ [Ca2+] in the suspending medium have different effects on the responses of human and rabbit platelets to collagen. 2. When rabbit platelets are stimulated with a low concentration of collagen (0.5 micrograms/ml), aggregation, release of granule contents, and formation of thromboxane are maximal when the suspending medium contains [Ca2+] in the physiological range (0.5-2.0 mM), and very slight in a medium with no added Ca2+. 3. In contrast, human platelets respond most strongly when the suspending medium contains no added Ca2+ [( Ca2+] approx. 20 microM); this is attributable to the enhanced formation of thromboxane A2 (TXA2) upon close platelet-to-platelet contact in this medium. 4. When TXA2 formation is blocked by inhibition of cyclo-oxygenase with aspirin or indomethacin, rabbit platelet aggregation and release in response to 1.25-10 micrograms/ml collagen is also maximal at [Ca2+] of 0.5-2.0 mM and least at 20 microM; human platelets do not aggregate and the extent of release is relatively independent of [Ca2+]. 5. In 1 mM [Ca2+], use of apyrase and/or ketanserin with rabbit platelets in which TXA2 formation is blocked shows that released ADP and serotonin make large contributions to aggregation and release in response to high concentrations of collagen; human platelet aggregation is largely dependent on TXA2. 6. Use of fura-2-loaded platelets shows that the collagen-induced rise in cytosolic [Ca2+] is only slightly inhibited by aspirin or indomethacin in rabbit platelets, but almost completely inhibited in human platelets. 7. Responses of rabbit platelets to collagen are less dependent on TXA2 than those of human platelets. Released ADP and serotonin make major contributions to the responses of rabbit platelets to collagen.  相似文献   

13.
Platelet aggregation inducer and inhibitor were isolated from Echis carinatus snake venom. The venom inducer caused aggregation of washed rabbit platelets which could be inhibited completely by heparin or hirudin. The venom inducer also inhibit both the reversibility of platelet aggregation induced by ADP and the disaggregating effect of prostaglandin E1 on the aggregation induced by collagen in the presence of heparin. The venom inhibitor decreased the platelet aggregation induced by collagen, thrombin, ionophore A23187, arachidonate, ADP and platelet-activating factor (PAF) with an IC50 of around 10 μg/ml. It did not inhibit the agglutination of formaldehyde-treated platelets induced by polylysine. In the presence of indomethacin or in ADP-refractory platelets or thrombin-degranulated platelets, the venom inhibitor further inhibited the collagen-induced aggregation. Fibrinogen antagonized competitively the inhibitory action of the venom inhibitor in collagen-induced aggregation. In chymotrypsin-treated platelets, the venom inhibitor abolished the aggregation induced by fibrinogen. It was concluded that the venom inducer caused platelet aggregation indirectly by the conversion of prothrombin to thrombin, while the venom inhibitor inhibited platelet aggregation by interfering with the interaction between fibrinogen and platelets.  相似文献   

14.
Spice active principles are reported to have anti-diabetic, anti-hypercholesterolemic, antilithogenic, anti-inflammatory, anti-microbial and anti-cancer properties. In our previous report we have shown that spices and their active principles inhibit 5-lipoxygenase and also formation of leukotriene C4. In this study, we report the modulatory effect of spice active principles viz., eugenol, capsaicin, piperine, quercetin, curcumin, cinnamaldehyde and allyl sulphide on in vitro human platelet aggregation. We have demonstrated that spice active principles inhibit platelet aggregation induced by different agonists, namely ADP (50 μM), collagen (500 μg/ml), arachidonic acid (AA) (1.0 mM) and calcium ionophore A-23187 (20 μM). Spice active principles showed preferential inhibition of arachidonic acid-induced platelet aggregation compared to other agonists. Among the spice active principles tested, eugenol and capsaicin are found to be most potent inhibitors of AA-induced platelet aggregation with IC50 values of 0.5 and 14.6 μM, respectively. The order of potency of spice principles in inhibiting AA-induced platelet aggregation is eugenol>capsaicin>curcumin>cinnamaldehyde>piperine>allyl sulphide>quercetin. Eugenol is found to be 29-fold more potent than aspirin in inhibiting AA-induced human platelet aggregation. Eugenol and capsaicin inhibited thromboxane B2 (TXB2) formation in platelets in a dose-dependent manner challenged with AA apparently by the inhibition of the cyclooxygenase (COX-1). Eugenol-mediated inhibition of platelet aggregation is further confirmed by dose-dependent decrease in malondialdehyde (MDA) in platelets. Further, eugenol and capsaicin inhibited platelet aggregation induced by agonists—collagen, ADP and calcium ionophore but to a lesser degree compared to AA. These results clearly suggest that spice principles have beneficial effects in modulating human platelet aggregation.  相似文献   

15.
The effects of aqueous extracts of raw and boiled garlic and onions were studied in vitro on the collagen-induced platelet aggregation using rabbit and human platelet-rich plasma. A dose dependant inhibition of rabbit platelet aggregation was observed with garlic. Onion also showed dose-dependent inhibitory effects on the collagen-induced platelet aggregation but this inhibition was of a lesser magnitude compared to garlic when related to dose. The concentration required for 50% inhibition of the platelet aggregation for garlic was calculated to be approximately 6.6 mg ml(-1) plasma, whereas the concentration for onion was 90 mg ml(-1) plasma. Boiled garlic and onion extracts showed a reduced inhibitory effect on platelet aggregation. Garlic but not onion significantly inhibits human platelet aggregation in a dose-dependent fashion. The potency of garlic in inhibiting the collagen-induced platelet aggregation is approximately similar to that of rabbit platelets (8.8 mg ml(-1) produced 50% inhibition of platelet aggregation). The results of this study show that garlic is about 13 times more potent than onion in inhibiting platelet aggregation and suggest that garlic and onion could be more potent inhibitors of blood platelet aggregation if consumed in raw than in cooked or boiled form.  相似文献   

16.
In an earlier study we reported the effect of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in releasing Ca2+ from highly purified human platelet intracellular membrane vesicles. [Authi & Crawford (1985) Biochem. J. 230, 247-253]. We have now investigated the metabolic and functional consequences of introducing Ins(1,4,5)P3 into saponin-permeabilized platelets. Washed human platelets when resuspended in a suitable medium were permeabilized with saponin (10-14 micrograms/ml) to allow entry of low-Mr water-soluble molecules without significant release of the cytoplasmic marker enzyme protein lactate dehydrogenase. Saponin-permeabilized platelets show identical platelet responses (shape change, aggregation and release of 5-hydroxy[14C]tryptamine) to both collagen (5 micrograms/ml) and thrombin (0.1 unit/ml) as obtained with intact cells, indicating that there is minimal disturbance to the surface membrane receptor topography for these two agonists. Ins(1,4,5)P3 (1-10 microM) added to saponin-treated platelets (but not to intact platelets) induced dose-related shape change, aggregation and release of 5-hydroxy[14C]tryptamine which at maximal doses was comparable with responses obtained with thrombin or collagen. The cyclo-oxygenase inhibitors indomethacin and aspirin, if added prior to saponization and Ins(1,4,5)P3 addition, completely inhibited both aggregation and release of 5-hydroxy[14C]tryptamine (EC50 for indomethacin, 50 nM; for aspirin, 30 microM). We believe that Ins(1,4,5)P3 induces the release of Ca2+ from intracellular storages sites which stimulates the Ca2+-dependent phospholipase A2 releasing arachidonic acid from membrane phospholipids. Arachidonic acid is then converted to the aggregatory prostanoids (prostaglandin H2 and thromboxane A2) resulting in the observed responses. This concept is supported by the use of the thromboxane receptor antagonists EPO 45 and EPO 92, both of which also completely inhibit Ins(1,4,5)P3-induced responses in saponin-permeabilized platelets. Electron microscopy of the platelet preparations revealed that thrombin- and collagen-induced platelet aggregates of intact and saponized cells were identical, showing extensive pseudopod formation and dense granule release. The Ins(1,4,5)P3-induced aggregates also showed similar dense granule release but an almost total absence of pseudopod formation. These results are discussed in the light of the second messenger role of Ins(1,4,5)P3 in stimulus-response coupling in platelets.  相似文献   

17.
The effects of different parts of extract from medicinal plant Conyza canadensis, used to control bleeding, on human blood platelet aggregation in vitro were investigated. Aqueous extract of Conyza c. from young or old plants, glycoconjugate part, polysaccharide part and aglycon part at the concentrations above 0.75 mg/ml strongly inhibited platelet aggregation induced by collagen (2 microg/ml) in dose-dependent manner. Polysaccharide part isolated from plant extract had the strongest inhibitory effect on aggregation stimulated by collagen and seems to be responsible for antiaggregatory properties.  相似文献   

18.
A synthetic octapeptide derived from type III collagen which specifically inhibits the activation and aggregation of platelets by collagen without affecting their adhesion was assayed on the collagen and ADP dependent fibrinogen binding to platelets. With 20 micrograms/ml collagen, the octapeptide (6 mM) inhibited by 68% the fibrinogen binding: this inhibition was correlated (p less than 0.01) to a decrease in the velocity of aggregation, suggesting that the fibrinogen binding might influence this parameter. The octapeptide did not affect the ADP-induced platelet aggregation and fibrinogen binding. This indicates that the octapeptide does not inhibit the binding of fibrinogen to its receptor directly, but interferes with some step(s) preceding the collagen-induced expression of the fibrinogen receptor.  相似文献   

19.
1. Human platelet nucleotides were labelled by incubating platelet-rich plasma with [U-(14)C]adenine. With such platelets, the effects of prostaglandin E1, theophylline and aspirin were determined on collagen-induced platelet aggregation and release of platelet ATP and ADP. Intracellular changes of platelet radioactive nucleotides, particularly 3':5'-cyclic AMP, were also determined both with and without collagen treatment. 2. Prostaglandin E1, theophylline and aspirin inhibited collagen-induced aggregation of platelets in a dose-dependent manner. Collagen-induced release of ATP and ADP and breakdown of radioactive ATP were also inhibited in a dose-dependent manner. 3. Prostaglandin E1 stimulated the formation of platelet radioactive 3':5'-cyclic AMP in a dose-dependent manner. With a given dose of prostaglandin E1, maximum formation of radioactive 3':5'-cyclic AMP occurred by 10-30s and thereafter the concentrations declined. The degree of inhibition of aggregation produced by prostaglandin E1, however, increased with its time of incubation in platelet-rich plasma before addition of collagen, so that there was an inverse relationship between the radioactive 3':5'-cyclic AMP concentration measured at the time of collagen addition and the subsequent degree of inhibition of aggregation obtained. 4. Neither theophylline nor aspirin at a concentration in platelet-rich plasma of 1.7mm altered platelet radioactive 3':5'-cyclic AMP contents. In the presence of prostaglandin E1, theophylline increased the concentration of radioactive 3':5'-cyclic AMP over that noted with prostaglandin E1 alone, but aspirin did not. 5. Mixtures of prostaglandin E1 and theophylline had a synergistic effect on inhibition of platelet aggregation. The same was true to a lesser extent with mixtures of prostaglandin E1 and aspirin. Such mixtures also inhibited collagen-induced release of platelet ATP and ADP and breakdown of platelet radioactive ATP. 6. Certain concentrations of either theophylline or aspirin and mixtures of small concentrations of prostaglandin E1 with either theophylline or aspirin caused little or no increase of radioactive 3':5'-cyclic AMP at the time of collagen addition, but inhibited aggregation to a marked degree, whereas higher concentrations of prostaglandin E1 alone caused a much greater increase of radioactive 3':5'-cyclic AMP at the time of collagen addition but inhibited aggregation to a lesser extent. With these compounds there does not appear to be a correlation between these parameters.  相似文献   

20.
The role of glycoprotein IV (GPIV) in platelet activation processes has been examined by several different approaches: (i) Fab fragments of a monospecific polyclonal antibody to purified platelet GPIV (approximately 20 micrograms/ml) completely inhibited platelet shape change, aggregation, and secretion induced by collagen. Aggregation and secretion by ADP (but not shape change) and by epinephrine were also inhibited, but there was no effect on platelet activation induced by thrombin, arachidonate, or ionophore A23187. (ii) Purified GPIV was able to compete completely with membrane-bound GPIV to inhibit platelet activation induced by collagen, including shape change, but not in activation induced by any of the other platelet agonists. 50% inhibition of collagen-induced activation and secretion were obtained at GPIV concentrations of approximately 10 nM (1 micrograms/ml). (iii) Purified GPIV bound rapidly and reversibly to collagen Type I fibrils, and binding was not inhibited by adhesive proteins such as denatured collagen, fibronectin, fibrinogen, or von Willebrand factor. The direct binding of purified GPIV to collagen Type I fibrils fit best to a single site model with Kd 0.34 +/- 0.10 nM. (iv) Using a microtiter assay, platelet adhesion to collagen was shown to be inhibited by Fab fragments of monospecific polyclonal anti-GPIV antibodies, but adhesion to other adhesive proteins was unaffected. (v) When anti-GPIV was added at various times during adhesion the time dependence of inhibition was seen to be biphasic. Anti-GP antibody was able to reverse adhesion that occurred within the first 5-8 min and to inhibit adhesion occurring thereafter. These results demonstrate that GPIV mediates the early stages of platelet recognition by and attachment to collagen but that there may be a second GPIV-independent mechanism that mediates the subsequent anchorage of these adherent platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号