首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phages infecting Lactococcus lactis, a Gram-positive bacterium, are a recurrent problem in the dairy industry. Despite their economical importance, the knowledge on these phages, belonging mostly to Siphoviridae, lags behind that accumulated for members of Myoviridae. The three-dimensional structures of the receptor-binding proteins (RBP) of three lactococcal phages have been determined recently, illustrating their modular assembly and assigning the nature of their bacterial receptor. These RBPs are attached to the baseplate, a large phage organelle, located at the tip of the tail. Tuc2009 baseplate is formed by the products of 6 open read frames, including the RBP. Because phage binding to its receptor induces DNA release, it has been postulated that the baseplate might be the trigger for DNA injection. We embarked on a structural study of the lactococcal phages baseplate, ultimately to gain insight into the triggering mechanism following receptor binding. Structural features of the Tuc2009 baseplate were established using size exclusion chromatography coupled to on-line UV-visible absorbance, light scattering, and refractive index detection (MALS/UV/RI). Combining the results of this approach with literature data led us to propose a "low resolution" model of Tuc2009 baseplate. This model will serve as a knowledge base to submit relevant complexes to crystallization trials.  相似文献   

2.
The protein products of at least 21 phage genes are needed for the formation of the tail of bacteriophage T4. Cells infected with amber mutants defective in these genes are blocked in the assembly process. By characterizing the intermediate structures and unassembled proteins accumulating in mutant-infected cells, we have been able to delineate most of the gene-controlled steps in tail assembly. Both the organized structures and unassembled proteins serve as precursors for in vitro tail assembly. We review here studies on the initiation, polymerization, and termination of the tail tube and contractile sheath and the genetic control of these processes. These studies make clear the importance of the baseplate; if baseplate formation is blocked (by mutation) the tube and sheath subunits remain essentially unaggregated, in the form of soluble subunits. Seventeen of the 21 tail genes specify proteins involved in baseplate assembly. The genes map contiguously in two separate clusters, one of nine genes and the other of eight genes. Recent studies show that the hexagonal baseplate is the end-product of two independent subassembly pathways. The proteins of the first gene cluster interact to form a structure which probably represents one-sixth of the outer radius. The products of the other gene cluster interact to form the central part of the baseplate. Most of the phage tail precursor proteins appear to be synthesized in a non-aggregating form; they are converted to a reactive form upon incorporation into preformed substrate complexes, without proteolytic cleavage. Thus reactive sites are limited to growing structures.  相似文献   

3.
The tail of bacteriophage T4 undergoes large structural changes upon infection while delivering the phage genome into the host cell. The baseplate is located at the distal end of the contractile tail and plays a central role in transmitting the signal to the tail sheath that the tailfibers have been adsorbed by a host bacterium. This then triggers the sheath contraction. In order to understand the mechanism of assembly and conformational changes of the baseplate upon infection, we have determined the structure of an in vitro assembled baseplate through the three-dimensional reconstruction of cryo-electron microscopy images to a resolution of 3.8 Å from electron micrographs. The atomic structure was fitted to the baseplate structure before and after sheath contraction in order to elucidate the conformational changes that occur after bacteriophage T4 has attached itself to a cell surface. The structure was also used to investigate the protease digestion of the assembly intermediates and the mutation sites of the tail genes, resulting in a number of phenotypes.  相似文献   

4.
The Type VI secretion system (T6SS) is a widespread weapon dedicated to the delivery of toxin proteins into eukaryotic and prokaryotic cells. The 13 T6SS subunits assemble a cytoplasmic contractile structure anchored to the cell envelope by a membrane-spanning complex. This structure is evolutionarily, structurally and functionally related to the tail of contractile bacteriophages. In bacteriophages, the tail assembles onto a protein complex, referred to as the baseplate, that not only serves as a platform during assembly of the tube and sheath, but also triggers the contraction of the sheath. Although progress has been made in understanding T6SS assembly and function, the composition of the T6SS baseplate remains mostly unknown. Here, we report that six T6SS proteins–TssA, TssE, TssF, TssG, TssK and VgrG–are required for proper assembly of the T6SS tail tube, and a complex between VgrG, TssE,-F and-G could be isolated. In addition, we demonstrate that TssF and TssG share limited sequence homologies with known phage components, and we report the interaction network between these subunits and other baseplate and tail components. In agreement with the baseplate being the assembly platform for the tail, fluorescence microscopy analyses of functional GFP-TssF and TssK-GFP fusion proteins show that these proteins assemble stable and static clusters on which the sheath polymerizes. Finally, we show that recruitment of the baseplate to the apparatus requires initial positioning of the membrane complex and contacts between TssG and the inner membrane TssM protein.  相似文献   

5.
Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.  相似文献   

6.
The tail structures of bacteriophages infecting gram-positive bacteria are largely unexplored, although the phage tail mediates the initial interaction with the host cell. The temperate Lactococcus lactis phage TP901-1 of the Siphoviridae family has a long noncontractile tail with a distal baseplate. In the present study, we investigated the distal tail structures and tail assembly of phage TP901-1 by introducing nonsense mutations into the late transcribed genes dit (orf46), tal(TP901-1) (orf47), bppU (orf48), bppL (orf49), and orf50. Transmission electron microscopy examination of mutant and wild-type TP901-1 phages showed that the baseplate consisted of two different disks and that a central tail fiber is protruding below the baseplate. Evaluation of the mutant tail morphologies with protein profiles and Western blots revealed that the upper and lower baseplate disks consist of the proteins BppU and BppL, respectively. Likewise, Dit and Tal(TP901-1) were shown to be structural tail proteins essential for tail formation, and Tal(TP901-1) was furthermore identified as the tail fiber protein by immunogold labeling experiments. Determination of infection efficiencies of the mutant phages showed that the baseplate is fundamental for host infection and the lower disk protein, BppL, is suggested to interact with the host receptor. In contrast, ORF50 was found to be nonessential for tail assembly and host infection. A model for TP901-1 tail assembly, in which the function of eight specific proteins is considered, is presented.  相似文献   

7.
Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study.  相似文献   

8.
Protein interactions in the assembly of the baseplate have been investigated. The baseplate of the phage T4 tail consists of a hub and six wedges which surround the former. Both reversible and irreversible interactions were found. Reversible association includes gp5 and gp27 (gp: gene product) which form a complex in a pH-dependent manner and gp18 polymerization, i.e. the tail sheath formation depends on the ionic strength. These reversible interactions were followed by irreversible or tight binding which pulls the whole association reaction to complete the assembly. The wedge assembly is strictly ordered which means that if one of the seven wedge proteins is missing, the assembly proceeds to that point and the remaining molecules stay non-associated. The strictly sequential assembly pathway is suggested to be materialized by successive conformational change upon binding, which can be shown by proteolytic probe.  相似文献   

9.
Lactococcal siphophages from the 936 and P335 groups infect the Gram-positive bacterium Lactococcus lactis using receptor binding proteins (RBPs) attached to their baseplate, a large multiprotein complex at the distal part of the tail. We have previously reported the crystal and electron microscopy (EM) structures of the baseplates of phages p2 (936 group) and TP901-1 (P335 group) as well as the full EM structure of the TP901-1 virion. Here, we report the complete EM structure of siphophage p2, including its capsid, connector complex, tail, and baseplate. Furthermore, we show that the p2 tail is characterized by the presence of protruding decorations, which are related to adhesins and are likely contributed by the major tail protein C-terminal domains. This feature is reminiscent of the tail of Escherichia coli phage λ and Bacillus subtilis phage SPP1 and might point to a common mechanism for establishing initial interactions with their bacterial hosts. Comparative analyses showed that the architecture of the phage p2 baseplate differs largely from that of lactococcal phage TP901-1. We quantified the interaction of its RBP with the saccharidic receptor and determined that specificity is due to lower koff values of the RBP/saccharidic dissociation. Taken together, these results suggest that the infection of L. lactis strains by phage p2 is a multistep process that involves reversible attachment, followed by baseplate activation, specific attachment of the RBPs to the saccharidic receptor, and DNA ejection.  相似文献   

10.
The baseplate of phage T4 is an important model system in viral supramolecular assembly. The baseplate consists of six wedges surrounding the central hub. We report the first successful attempt at complete wedge assembly using an in vitro approach based on recombinant proteins. The cells expressing the individual wedge proteins were mixed in a combinatorial manner and then lysed. Using this approach, we could both reliably isolate the complete wedge along with a series of intermediate complexes as well as determine the exact sequence of assembly. The individual proteins and intermediate complexes at each step of the wedge assembly were successfully purified and characterized by sedimentation velocity and electron microscopy. Although our results mostly confirmed the hypothesized sequential wedge assembly pathway as established using phage mutants, interestingly, we also detected some protein interactions not following the specified order. It was found that association of gene product 53 to the immediate precursor complex induces spontaneous association of the wedges to form a six-fold star-shaped baseplate-like structure in the absence of the hub. The formation of the baseplate-like structure was facilitated by the addition of gene product 25. The complete wedge in the star-shaped supramolecular complex has a structure similar to the baseplate in the expanded “star” conformation found after infection. Based on the results of the present and previous studies, we assume that the strict order of wedge assembly is due to the induced conformational change caused by every new binding event. The significance of a 40-S star-shaped baseplate structure, which was previously reported and was also found in this study, is discussed in the light of a new paradigm for T4 baseplate assembly involving the star-shaped wedge ring and the central hub. Importantly, the methods described in this article suggest a novel methodology for future structural characterization of supramolecular protein assemblies.  相似文献   

11.
Bacteriophage T4 and related viruses have a contractile tail that serves as an efficient mechanical device for infecting bacteria. A three-dimensional cryo-EM reconstruction of the mature T4 tail assembly at 15-A resolution shows the hexagonal dome-shaped baseplate, the extended contractile sheath, the long tail fibers attached to the baseplate and the collar formed by six whiskers that interact with the long tail fibers. Comparison with the structure of the contracted tail shows that tail contraction is associated with a substantial rearrangement of the domains within the sheath protein and results in shortening of the sheath to about one-third of its original length. During contraction, the tail tube extends beneath the baseplate by about one-half of its total length and rotates by 345 degrees , allowing it to cross the host's periplasmic space.  相似文献   

12.
Gene product (gp) 9 connects the long tail fibers and triggers the structural transition of T4 phage baseplate at the beginning of infection process. Gp9 is a parallel homotrimer with 288 amino acid residues per chain that forms three domains. To investigate the role of the gp9 amino terminus, we have engineered a set of mutants with deletions and random substitutions in this part. The structure of the mutants was probed using monoclonal antibodies that bind to either N-terminal, middle, or C-terminal domains. Deletions of up to 12 N-terminal residues as well as random substitutions of the second, third and fourth residues yielded trimers that failed to incorporate in vitro into the T4 9(-)-particles and were not able to convert them into infectious virions. As detected using monoclonal antibodies, these mutants undergo structural changes in both N-terminal and middle domains. Furthermore, deletion of the first twenty residues caused profound structural changes in all three gp9 domains. In addition, N-terminally truncated proteins and randomized mutants formed SDS-resistant "conformers" due to unwinding of the N-terminal region. Co-expression of the full-length gp9 and the mutant lacking first 20 residues clearly shows the assembly of heterotrimers, suggesting that the gp9 trimerization in vivo occurs post-translationally. Collectively, our data indicate that the aminoterminal sequence of gp9 is important to maintain a competent structure capable of incorporating into the baseplate, and may be also required at intermediate stages of gp9 folding and assembly.  相似文献   

13.
Three types of reagents were used to determine the structural role and location of the polyglutamate portion of the Escherichia coli T4D bacteriophage baseplate dihydropteroyl hexaglutamate. These reagents were examined for their effect in vitro on some of the final steps in phage baseplate morphogenesis. The reagents were (i) a series of oligopeptides composed solely of glutamic acid residues but with various chemical linkages and chain lengths; (ii) a homogeneous preparation of carboxypeptidase G1, an exopeptidase that hydrolyzes carboxyl-terminal glutamates (or aspartates) from simple oligopeptides, including the gamma-glutamyl bonds on folyl polyglutamates as well as the bond between the carboxyl group of the p-aminobenzoyl moiety and the amino group of the first glutamic acid residue of folic acid; and (iii) antisera prepared against a polyglutamate hapten. All three types of reagent markedly inhibited the attachment of the phage long tail fibers to the baseplate. Other steps in baseplate assembly such as the addition of T4D gene 11 or gene 12 products were not affected by any of these reagents. These results indicate that the polyglutamate portion of the folate is located near the attachment site on the bacteriophage baseplate for the long tail fibers.  相似文献   

14.
The length of the T4 tail is precisely regulated in vivo at the time of polymerization of the tail core protein onto the baseplate. Since no mutations which alter tail length have been identified, a study of in vivo-assembled tail cores was begun to determine whether the structural properties of assembled cores would reveal the mechanism of length regulation. An assembly intermediate consisting of a core attached to a baseplate (core-baseplate) was purified from cells infected with a T4 mutant in gene 15. When core-base plates were treated with guanidine hydrochloride, cores were released from baseplates. The released cores had the same mean length as cores attached to baseplates. Electron micrographs of these cores showed partial penetration of negative stain into one end, and, at the opposite end, a modified tip which often appeared as a short fiber projecting from the core. When cores were purified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two minor proteins and the major core protein were detected. One minor protein, the product of gene 48 (gp48), was present in at least 72% of the amount found in core-baseplates, relative to the amount of the major core protein. These findings suggest that cores contain a fibrous structure, possibly composed of gp48, which may form a "ruler" that specifies the length of the T4 tail.  相似文献   

15.
The recognition and binding of a free-swimming spermatozoon to an ovulated oocyte is one of the most important cellular interactions in biology. While traditionally viewed as a simple lock and key mechanism, emerging evidence suggests that this event may require the concerted action of several sperm proteins. In this study we examine the hypothesis that the activity of such proteins may be coordinated by their assembly into multimeric recognition complexes on the sperm surface. Through the novel application of blue native polyacrylamide gel electrophoresis (BN-PAGE), we tender the first direct evidence that human spermatozoa do indeed express a number of high molecular weight protein complexes on their surface. Furthermore, we demonstrate that a subset of these complexes displays affinity for homologous zonae pellucidae. Proteomic analysis of two such complexes using electrospray ionization mass spectrometry identified several of the components of the multimeric 20S proteasome and chaperonin-containing TCP-1 (CCT) complexes. The latter complex was also shown to harbor at least one putative zona pellucida binding protein, ZPBP2. Consistent with a role in the mediation of sperm-zona pellucida interaction we demonstrated that antibodies directed against individual subunits of these complexes were able to inhibit sperm binding to zona-intact oocytes. Similarly, these results were able to be recapitulated using native sperm lysates, the zona affinity of which was dramatically reduced by antibody labeling of the complex receptors, or in the case of the 20S proteasome the ubiquitinated zonae ligands. Overall, the strategies employed in this study have provided novel, causal insights into the molecular mechanisms that govern sperm-egg interaction.  相似文献   

16.
The central part of the bacteriophage T4 baseplate consists of several proteins. However, for a number of the constituents the manner of incorporation are not convincingly established. Recently, we have presented evidence that gp28 is the structural component of the central part of the baseplate, which possesses a hydrophobic region and is membrane bound [Nieradko et al., 1998]. By utilizing extracts prepared from Escherichia coli cells that overexpressed genes 27 and 28 of phage T4, we proved that gp28 forms a complex with an another baseplate structural components: gp27. This complex was located in the membrane fraction. Its affinity to the inner membrane indicates that the identified complex may function as an initiator of the central hub assembly. It was subsequently established that these products interact in the ratio 1:1. We have also demonstrated that the particular components of the complex can be separated by action of SDS and to a lesser extent by Triton X-100.  相似文献   

17.
The tail of bacteriophage T4 consists of a contractile sheath surrounding a rigid tube and terminating in a multiprotein baseplate, to which the long and short tail fibers of the phage are attached. Upon binding of the fibers to their cell receptors, the baseplate undergoes a large conformational switch, which initiates sheath contraction and culminates in transfer of the phage DNA from the capsid into the host cell through the tail tube. The baseplate has a dome-shaped sixfold-symmetric structure, which is stabilized by a garland of six short tail fibers, running around the periphery of the dome. In the center of the dome, there is a membrane-puncturing device, containing three lysozyme domains, which disrupts the intermembrane peptidoglycan layer during infection.  相似文献   

18.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   

19.
The type VI secretion system (T6SS) is a multiprotein weapon evolved by Gram-negative bacteria to deliver effectors into eukaryotic cells or bacterial rivals. The T6SS uses a contractile mechanism to propel an effector-loaded needle into its target. The contractile tail is built on an assembly platform, the baseplate, which is anchored to a membrane complex. Baseplate-membrane complex interactions are mainly mediated by contacts between the C-terminal domain of the TssK baseplate component and the cytoplasmic domain of the TssL inner membrane protein. Currently, the structural details of this interaction are unknown due to the marginal stability of the TssK-TssL complex. Here we conducted a mutagenesis study based on putative TssK-TssL contact pairs identified by co-evolution analyses. We then evaluated the impact of these mutations on T6SS activity, TssK-TssL interaction and sheath assembly and dynamics in enteroaggregative Escherichia coli. Finally, we probed the TssK-TssL interface by disulfide cross-linking, allowing to propose a model for the baseplate-membrane complex interface.  相似文献   

20.
Contractile injection systems are multiprotein complexes that use a spring-like mechanism to deliver effectors into target cells. In addition to using a conserved mechanism, these complexes share a common core known as the tail. The tail comprises an inner tube tipped by a spike, wrapped by a contractile sheath, and assembled onto a baseplate. Here, using the type VI secretion system (T6SS) as a model of contractile injection systems, we provide molecular details on the interaction between the inner tube and the spike. Reconstitution into the Escherichia coli heterologous host in the absence of other T6SS components and in vitro experiments demonstrated that the Hcp tube component and the VgrG spike interact directly. VgrG deletion studies coupled to functional assays showed that the N-terminal domain of VgrG is sufficient to interact with Hcp, to initiate proper Hcp tube polymerization, and to promote sheath dynamics and Hcp release. The interaction interface between Hcp and VgrG was then mapped using docking simulations, mutagenesis, and cysteine-mediated cross-links. Based on these results, we propose a model in which the VgrG base serves as adaptor to recruit the first Hcp hexamer and initiates inner tube polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号